A131322 Row sums of triangle A131321.
1, 1, 3, 5, 12, 23, 51, 103, 221, 456, 965, 2009, 4227, 8833, 18540, 38803, 81363, 170399, 357145, 748176, 1567849, 3284833, 6883059, 14421533, 30218028, 63314735, 132664227, 277968871, 582428789, 1220356440, 2557009709
Offset: 0
Keywords
Examples
a(4) = 12 = 5 + 0 + 6 + 0 + 1.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 3.
- Index entries for linear recurrences with constant coefficients, signature (1,3,-1,-1).
Programs
-
Mathematica
LinearRecurrence[{1, 3, -1, -1}, {1, 1, 3, 5}, 50] (* Paolo Xausa, Jan 28 2025 *)
Formula
G.f.: (1-x^2)/(1 - x - 3x^2 + x^3 + x^4). - Philippe Deléham, Jan 21 2012
a(n) = a(n-1) + 3*a(n-2) - a(n-3) - a(n-4), a(0)=1, a(1)=1, a(2)=3, a(3)=5. - Philippe Deléham, Jan 21 2012
a(n) = Sum_{m=0..ceiling(n/2)} binomial(n-m,n-2*m)*Fibonacci(n-2*m+1). - Vladimir Kruchinin, Jan 26 2013
From Nicolas Bělohoubek, Jan 21 2025: (Start)
a(n) = Sum_{m=1..4} (alpha_m * x_m^n). For x_m and alpha_m values see "L-tetromino tilings" article in links.
a(2*n) = A166482(n). (End)
Extensions
a(10)-a(30) from Philippe Deléham, Jan 21 2012
Comments