cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131322 Row sums of triangle A131321.

Original entry on oeis.org

1, 1, 3, 5, 12, 23, 51, 103, 221, 456, 965, 2009, 4227, 8833, 18540, 38803, 81363, 170399, 357145, 748176, 1567849, 3284833, 6883059, 14421533, 30218028, 63314735, 132664227, 277968871, 582428789, 1220356440, 2557009709
Offset: 0

Views

Author

Gary W. Adamson, Jun 28 2007

Keywords

Comments

Equals INVERT transform of (1, 2, 0, 1, 0, 1, 0, 1, ...). - Gary W. Adamson, Apr 28 2009
The sequence is also the INVERT transform of the aerated odd-indexed Fibonacci numbers (i.e., of (1, 0, 2, 0, 5, 0, ...)). Sequence A124400 is the INVERT transform of the aerated even-indexed Fibonacci numbers. - Gary W. Adamson, Feb 07 2014
a(n) is the number of tilings of a 4 X 2n rectangle into L tetrominoes (no reflections, only rotations). - Nicolas Bělohoubek, Jan 21 2025

Examples

			a(4) = 12 = 5 + 0 + 6 + 0 + 1.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 3, -1, -1}, {1, 1, 3, 5}, 50] (* Paolo Xausa, Jan 28 2025 *)

Formula

G.f.: (1-x^2)/(1 - x - 3x^2 + x^3 + x^4). - Philippe Deléham, Jan 21 2012
a(n) = a(n-1) + 3*a(n-2) - a(n-3) - a(n-4), a(0)=1, a(1)=1, a(2)=3, a(3)=5. - Philippe Deléham, Jan 21 2012
a(n) = Sum_{m=0..ceiling(n/2)} binomial(n-m,n-2*m)*Fibonacci(n-2*m+1). - Vladimir Kruchinin, Jan 26 2013
From Nicolas Bělohoubek, Jan 21 2025: (Start)
a(n) = Sum_{m=1..4} (alpha_m * x_m^n). For x_m and alpha_m values see "L-tetromino tilings" article in links.
a(2*n) = A166482(n). (End)

Extensions

a(10)-a(30) from Philippe Deléham, Jan 21 2012