cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131338 Triangle, read by rows of n*(n+1)/2 + 1 terms, that starts with a '1' in row 0 with row n consisting of n '1's followed by the partial sums of the prior row.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 2, 3, 4, 6, 9, 14, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 20, 29, 43, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 27, 37, 51, 71, 100, 143, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 35, 46, 61, 81, 108, 145, 196
Offset: 0

Views

Author

Paul D. Hanna, Jun 29 2007

Keywords

Examples

			Triangle begins:
1;
1, 1;
1,1, 1,2;
1,1,1, 1,2,3,5;
1,1,1,1, 1,2,3,4,6,9,14;
1,1,1,1,1, 1,2,3,4,5,7,10,14,20,29,43;
1,1,1,1,1,1, 1,2,3,4,5,6,8,11,15,20,27,37,51,71,100,143;
1,1,1,1,1,1,1, 1,2,3,4,5,6,7,9,12,16,21,27,35,46,61,81,108,145,196,267,367,510; ...
Row sums equal the row sums (A098569) of triangle A098568,
where A098568(n, k) = binomial( (k+1)*(k+2)/2 + n-k-1, n-k):
1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 10, 21, 10, 1;
1, 15, 56, 55, 15, 1;
1, 21, 126, 220, 120, 21, 1; ...
		

Crossrefs

Cf. A098568, A098569 (row sums), A121690, A183202.
Cf. A214403 (variant).

Programs

  • PARI
    T(n,k)=if(k>n*(n+1)/2 || k<0,0,if(k<=n,1,sum(i=0,k-n,T(n-1,i))))
    for(n=0, 10, for(k=0, n*(n+1)/2, print1(T(n, k), ", ")); print(""))

Formula

T(n,k) = Sum_{i=0..k-n} T(n-1,i) for k>n, else T(n,k)=1 for n>=k>=0.
Right border: T(n+1, (n+1)*(n+2)/2) = A098569(n) = Sum_{k=0..n} C( (k+1)*(k+2)/2 + n-k-1, n-k).
T(n, n*(n-1)/2 + 1) = Sum_{k=0..n-1} C(k*(k+1)/2, n-k) = A121690(n-1) for n>=1. - Paul D. Hanna, Aug 30 2007