A131338 Triangle, read by rows of n*(n+1)/2 + 1 terms, that starts with a '1' in row 0 with row n consisting of n '1's followed by the partial sums of the prior row.
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 2, 3, 4, 6, 9, 14, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 20, 29, 43, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 27, 37, 51, 71, 100, 143, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 35, 46, 61, 81, 108, 145, 196
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1,1, 1,2; 1,1,1, 1,2,3,5; 1,1,1,1, 1,2,3,4,6,9,14; 1,1,1,1,1, 1,2,3,4,5,7,10,14,20,29,43; 1,1,1,1,1,1, 1,2,3,4,5,6,8,11,15,20,27,37,51,71,100,143; 1,1,1,1,1,1,1, 1,2,3,4,5,6,7,9,12,16,21,27,35,46,61,81,108,145,196,267,367,510; ... Row sums equal the row sums (A098569) of triangle A098568, where A098568(n, k) = binomial( (k+1)*(k+2)/2 + n-k-1, n-k): 1; 1, 1; 1, 3, 1; 1, 6, 6, 1; 1, 10, 21, 10, 1; 1, 15, 56, 55, 15, 1; 1, 21, 126, 220, 120, 21, 1; ...
Links
- Paul D. Hanna, Rows n = 0..16, flattened.
Programs
-
PARI
T(n,k)=if(k>n*(n+1)/2 || k<0,0,if(k<=n,1,sum(i=0,k-n,T(n-1,i)))) for(n=0, 10, for(k=0, n*(n+1)/2, print1(T(n, k), ", ")); print(""))
Formula
T(n,k) = Sum_{i=0..k-n} T(n-1,i) for k>n, else T(n,k)=1 for n>=k>=0.
Right border: T(n+1, (n+1)*(n+2)/2) = A098569(n) = Sum_{k=0..n} C( (k+1)*(k+2)/2 + n-k-1, n-k).
T(n, n*(n-1)/2 + 1) = Sum_{k=0..n-1} C(k*(k+1)/2, n-k) = A121690(n-1) for n>=1. - Paul D. Hanna, Aug 30 2007