cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131371 Number of anagrams of n that are semiprimes.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 2, 0, 1, 0, 1, 0, 0, 1, 1, 0, 2, 0, 2, 1, 1, 0, 1, 1, 1, 2, 1, 0, 0, 2, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 2, 1, 1, 0, 0, 0, 1, 0, 2, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1
Offset: 1

Views

Author

Jonathan Vos Post, Sep 30 2007

Keywords

Comments

An anagram of a k-digit number is one of the k! permutations of the digits that does not begin with 0.

Examples

			a(123) = 3 because 123 = 3 * 41 is semiprime, 213 = 3 * 71 is semiprime, 321 = 3 * 107 is semiprime, while the other anagrams 132, 231 and 312 have respectively 3, 3 and 5 prime factors with multiplicity.
a(129) = 4 because 129 = 3 * 43 is semiprime, 219 = 3 * 73 is semiprime, 291 = 3 * 97 is semiprime, 921 = 3 * 307 is semiprime, while 192 and 912 have 7 and 6 prime factors with multiplicity.
a(134) = 5 because 134 = 2 * 67 and 143 = 11 * 13 and 314 = 2 * 157 and 341 = 11 * 31 and 413 = 7 * 59 are semiprimes, while 431 is prime.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L,m,t,i;
      L:= convert(n,base,10); m:= nops(L);
      nops(select(t -> t[-1] <> 0 and numtheory:-bigomega(add(t[i]*10^(i-1), i=1..m))=2, combinat:-permute(L)));
    end proc:
    map(f, [$1..200]); # Robert Israel, Jun 11 2023
  • Python
    from sympy import factorint
    from sympy.utilities.iterables import multiset_permutations as mp
    def c(n):
        return sum(factorint(n).values()) == 2
    def a(n):
        return sum(1 for p in mp(str(n)) if p[0]!="0" and c(t:=int("".join(p))))
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Jun 11 2023