cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131383 Total digital sum of n: sum of the digital sums of n for all the bases 1 to n (a 'digital sumorial').

Original entry on oeis.org

1, 3, 6, 8, 13, 16, 23, 25, 30, 35, 46, 46, 59, 66, 75, 74, 91, 91, 110, 112, 125, 136, 159, 152, 169, 182, 195, 199, 228, 223, 254, 253, 274, 291, 316, 297, 334, 353, 378, 373, 414, 409, 452, 460, 475, 498, 545, 520, 557, 565, 598, 608, 661, 652, 693, 690
Offset: 1

Views

Author

Hieronymus Fischer, Jul 05 2007, Jul 15 2007, Jan 07 2009

Keywords

Comments

Sums of rows of the triangle in A138530. - Reinhard Zumkeller, Mar 26 2008

Examples

			5 = 11111(base 1) = 101(base 2) = 12(base 3) = 11(base 4) = 10(base 5). Thus a(5) = ds_1(5)+ds_2(5)+ds_3(5)+ds_4(5)+ds_5(5) = 5+2+3+2+1 = 13.
		

Crossrefs

Programs

  • Mathematica
    Table[n + Total@ Map[Total@ IntegerDigits[n, #] &, Range[2, n]], {n, 56}] (* Michael De Vlieger, Jan 03 2017 *)
  • PARI
    a(n)=sum(i=2,n+1,vecsum(digits(n,i))); \\ R. J. Cano, Jan 03 2017

Formula

a(n) = n^2-sum{k>0, sum{2<=p<=n, (p-1)*floor(n/p^k)}}.
a(n) = n^2-sum{2<=p<=n, (p-1)*sum{0
a(n) = n^2-A024916(n)+A006218(n)-sum{k>1, sum{2<=p<=n, (p-1)*floor(n/p^k)}}.
a(n) = A004125(n)+A006218(n)-sum{k>1, sum{2<=p<=n, (p-1)*floor(n/p^k)}}.
Asymptotic behavior: a(n) = (1-Pi^2/12)*n^2 + O(n*log(n)) = A004125(n) + A006218(n) + O(n*log(n)).
Lim a(n)/n^2 = 1 - Pi^2/12 for n-->oo.
G.f.: (1/(1-x))*(x(1+x)/(1-x)^2-sum{k>0,sum{j>1,(j-1)*x^(j^k)/(1-x^(j^k))}= }).
Also: (1/(1-x))*(x(1+x)/(1-x)^2-sum{m>1, sum{10,j^(1/k) is an integer, j^(1/k)-1}}*x^m}).
a(n) = n^2-sum{10,sum{1
Recurrence: a(n)=a(n-1)-b(n)+2n-1, where b(n)=sum{1
a(n) = sum{1<=p<=n, ds_p(n)} where ds_p = digital sum base p.
a(n) = A043306(n) + n (that sequence ignores unary) = A014837(n) + n + 1 (that sequence ignores unary and base n in which n is "10"). - Alonso del Arte, Mar 26 2009