A131383 Total digital sum of n: sum of the digital sums of n for all the bases 1 to n (a 'digital sumorial').
1, 3, 6, 8, 13, 16, 23, 25, 30, 35, 46, 46, 59, 66, 75, 74, 91, 91, 110, 112, 125, 136, 159, 152, 169, 182, 195, 199, 228, 223, 254, 253, 274, 291, 316, 297, 334, 353, 378, 373, 414, 409, 452, 460, 475, 498, 545, 520, 557, 565, 598, 608, 661, 652, 693, 690
Offset: 1
Examples
5 = 11111(base 1) = 101(base 2) = 12(base 3) = 11(base 4) = 10(base 5). Thus a(5) = ds_1(5)+ds_2(5)+ds_3(5)+ds_4(5)+ds_5(5) = 5+2+3+2+1 = 13.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Digit Sum
Programs
-
Mathematica
Table[n + Total@ Map[Total@ IntegerDigits[n, #] &, Range[2, n]], {n, 56}] (* Michael De Vlieger, Jan 03 2017 *)
-
PARI
a(n)=sum(i=2,n+1,vecsum(digits(n,i))); \\ R. J. Cano, Jan 03 2017
Formula
a(n) = n^2-sum{k>0, sum{2<=p<=n, (p-1)*floor(n/p^k)}}.
a(n) = n^2-sum{2<=p<=n, (p-1)*sum{0
Lim a(n)/n^2 = 1 - Pi^2/12 for n-->oo.
G.f.: (1/(1-x))*(x(1+x)/(1-x)^2-sum{k>0,sum{j>1,(j-1)*x^(j^k)/(1-x^(j^k))}= }).
Also: (1/(1-x))*(x(1+x)/(1-x)^2-sum{m>1, sum{10,j^(1/k) is an integer, j^(1/k)-1}}*x^m}).
a(n) = n^2-sum{10,sum{1
Recurrence: a(n)=a(n-1)-b(n)+2n-1, where b(n)=sum{1
a(n) = sum{1<=p<=n, ds_p(n)} where ds_p = digital sum base p.
a(n) = A043306(n) + n (that sequence ignores unary) = A014837(n) + n + 1 (that sequence ignores unary and base n in which n is "10"). - Alonso del Arte, Mar 26 2009
Comments