A131450 a(n) is the number of integers x that can be written x = (2^c(1) - 2^c(2) - 3*2^c(3) - 3^2*2^c(4) - ... - 3^(m-2)*2^c(m) - 3^(m-1)) / 3^m for integers c(1), c(2), ..., c(m) such that n = c(1) > c(2) > ... > c(m) > 0 and c(1) - c(2) != 2 if m >= 2.
0, 1, 0, 1, 1, 1, 1, 1, 2, 4, 6, 6, 7, 8, 11, 18, 23, 29, 39, 52, 71, 99, 124, 160, 220, 302, 403, 532, 707, 936, 1249, 1668, 2220, 2976, 3966, 5278, 7028, 9386, 12531, 16696, 22246, 29622, 39540, 52768, 70395, 93795, 124977, 166619, 222222, 296358, 395213
Offset: 1
Keywords
Examples
For n=3, the only valid c are: c = (3,2,1): (2^3 - 2^2 - 3^1*2^1 - 3^2) / 3^3 = -11/27, c = (3,2): (2^3 - 2^2 - 3^1) / 3^2 = 1/9, c = (3): (2^3 - 2^0) / 3 = 7/3, and none are integers so a(3) = 0. a(9)=2: c = (9,5): (2^9 - 2^5 - 3) / 3 = 53, c = (9,5,2): (2^9 - 2^5 - 3*2^2 - 9) / 27 = 17, and no other valid c give integer x. From _Jon E. Schoenfield_, Mar 15 2022: (Start) The a(12)=6 integers x are { 15, 45, 141, 151, 453, 1365 }, of which only one (151) satisfies x == 1 (mod 6); the a(13)=7 integers x are { 9, 29, 93, 277, 301, 853, 909 }, of which only one (29) satisfies x == 5 (mod 6); thus, at n=14, the set of a(14)=8 integers is the union of the three sets { 4*15+1 = 61, 4*45+1 = 181, 4*141+1 = 565, 4*151+1 = 605, 4*453+1 = 1813, 4*1365+1 = 5461 }, { (4*151-1)/3 = 201 }, and { (2*29-1)/3 = 19 }. (End)
Links
Programs
-
Magma
a:=[0,1,0,1]; Y:=[]; X:=[5]; for n in [5..51] do Z:=Y; Y:=X; X:=[]; for x in Z do X[#X+1]:=4*x+1; end for; for x in Z do if x mod 6 eq 1 then X[#X+1]:=(4*x-1) div 3; end if; end for; for x in Y do if x mod 6 eq 5 then X[#X+1]:=(2*x-1) div 3; end if; end for; X:=Sort(X); a[n]:=#X; end for; a; // Jon E. Schoenfield, Mar 15 2022
Extensions
Edited by David Applegate, Oct 16 2008
a(51) from Jon E. Schoenfield, Mar 15 2022
Comments