A131456 Number of q-partial fraction summands of the reciprocal of n-th cyclotomic polynomial.
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 7, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 10, 1, 2, 1, 2, 1, 2, 1, 2, 7
Offset: 1
Keywords
Examples
(i) a(3)=1 because 1/Phi(3,q)=(1-q)/(1-q^3); (ii) a(6)=2 because 1/Phi(6,q)=(-1-q)/(1-q^3) + (2+2q)/(1-q^6).
Links
- Augustine O. Munagi, Computation of q-partial fractions, INTEGERS: Electronic Journal Of Combinatorial Number Theory, 7 (2007), #A25.
- Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
Crossrefs
Cf. A051664 (Number of terms in n-th cyclotomic polynomial).
Comments