A038142
Number of planar cata-polyhexes with n cells.
Original entry on oeis.org
1, 1, 2, 5, 12, 36, 118, 411, 1489, 5572, 21115, 81121, 314075, 1224528, 4799205, 18896981, 74695032, 296275836, 1178741568, 4702507923, 18806505243, 75380203150, 302754225098, 1218239791106
Offset: 1
Differs from A002216 starting from a(6) = 36 = A002216(6) - 1: the polyhexes counted by a(6) do not include the ring-like configuration of 6 hexagons where one pair of hexagons which are adjacent from the planar point of view actually have an overlapping pair of external edges rather than a single shared edge. That non-planar configuration is shown in Fig. 2 of the Harary & Read (1970) reference in A002216.
- N. Trinajstić, S. Nikolić, J. V. Knop, W. R. Müller and K. Szymanski, Computational Chemical Graph Theory: Characterization, Enumeration, and Generation of Chemical Structures by Computer Methods, Ellis Horwood, 1991.
- A. T. Balaban, J. Brunvoll, B. N. Cyvin and S. J. Cyvin, Enumeration of branched catacondensed benzenoid hydrocarbons and their numbers of Kekulé structures, Tetrahedron, 44(1), 221-228 (1998). See Table 1.
- Gunnar Brinkmann, Gilles Caporossi and Pierre Hansen, A Survey and New Results on Computer Enumeration of Polyhex and Fusene Hydrocarbons, J. Chem. Inf. Comput. Sci., 43 (2003), 842-851.
- Gilles Caporossi and Pierre Hansen, Enumeration of Polyhex Hydrocarbons to h = 21, J. Chem. Inf. Comput. Sci., 38 (1998), 610-619.
- Andrew Clarke, Isoperimetrical Polyhexes
- Wenchen He and Wenjie He, Generation and enumeration of planar polycyclic aromatic hydrocarbons, Tetrahedron 42.19 (1986): 5291-5299. See Table 3.
- J. V. Knop et al., On the total number of polyhexes, Match, No. 16 (1984), 119-134.
- Ratko Tošić, Dragan Mašulović, Ivan Stojmenović, Jon Brunvoll, Bjorg N. Cyvin and Sven J. Cyvin, Enumeration of polyhex hydrocarbons to h = 17, J. Chem. Inf. Comput. Sci., 35 (1995), 181-187.
- N. Trinajstich, Z. Jerievi, J. V. Knop, W. R. Muller and K. Szymanski, Computer Generation of Isomeric Structures, Pure & Appl. Chem., Vol. 55, No. 2, pp. 379-390, 1983.
- Eric Weisstein's World of Mathematics, Polyhex.
- Eric Weisstein's World of Mathematics, Fusene.
A131482 is the analog for polyominoes.
a(16)-a(17) from Tošić et al., a(18)-a(20) from Caporossi & Hansen and a(21)-a(24) from Brinkmann, Caporossi & Hansen added by
Andrey Zabolotskiy, Apr 11 2025
A342243
Triangle T(n,p) read by rows: the number of n-celled polyominoes with perimeter 2p, 2 <= p <= 1+n.
Original entry on oeis.org
1, 0, 1, 0, 0, 2, 0, 0, 1, 4, 0, 0, 0, 1, 11, 0, 0, 0, 1, 7, 27, 0, 0, 0, 0, 4, 21, 83, 0, 0, 0, 0, 2, 21, 91, 255, 0, 0, 0, 0, 1, 9, 89, 339, 847, 0, 0, 0, 0, 0, 6, 67, 393, 1360, 2829, 0, 0, 0, 0, 0, 1, 45, 325, 1713, 5255, 9734, 0, 0, 0, 0, 0, 1, 23, 275
Offset: 1
The triangle has rows n=1,2,3,... and columns p=2,3,4,5,...:
1;
0, 1;
0, 0, 2;
0, 0, 1, 4;
0, 0, 0, 1, 11;
0, 0, 0, 1, 7, 27;
0, 0, 0, 0, 4, 21, 83;
0, 0, 0, 0, 2, 21, 91, 255;
0, 0, 0, 0, 1, 9, 89, 339, 847;
0, 0, 0, 0, 0, 6, 67, 393, 1360, 2829;
0, 0, 0, 0, 0, 1, 45, 325, 1713, 5255, 9734;
...
A304196
Number of free tree-like polycubes of size n in three dimensions.
Original entry on oeis.org
1, 1, 2, 6, 21, 91, 484, 2817, 17788, 116741, 788081, 5414701, 37703459, 265182187
Offset: 1
- Alexandre Blondin Massé, Julien de Carufel, Alain Goupil, and Maxime Samson, Fully-leafed tree-like polyominoes and polycubes, In Combinatorial algorithms, volume 10765 of Lecture Notes of Computer Science, 28th International workshop, IWOCA 2017, Newcastle, NSW, Australia, Springer, 2018.
Cf.
A118356 (fixed tree-like 3d-polycubes),
A304198 (free tree-like 4d-polycubes),
A131482 (free tree-like polyominoes).
A131487
a(n) is the number of polyominoes with n edges, including inner edges.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 4, 0, 1, 11, 1, 7, 27, 4, 21, 85, 21, 92, 264, 89, 345, 914, 394, 1405, 3155, 1736, 5530, 11400, 7586, 22022, 41756, 32702, 87158, 156412, 139253, 346836, 592661, 589101, 1379837, 2275935, 2476770, 5501846, 8830267, 10363627, 21970992, 34594887, 43188260, 87950618
Offset: 1
A single cell has 4 edges; a domino has 7 edges (this includes the edge between the two cells); both trominoes have 10 edges; their possible orientations are not considered distinct. Thus a(4) = a(7) = 1, a(10) = 2, and a(n) = 0 for n < 10 not equal to 4 or 7.
a(22) = 85 = 83 + 2: there are 83 polyominoes with 7 cells and perimeter 16 (such as a 1 X 7 strip) and two polyominoes with 8 cells and perimeter 12 (a 3 X 3 square without a corner and a 4 X 2 rectangle), and each of these polyominoes has 22 edges.
a(23) = 21. a(24) = 91+1. a(25) = 255+9. a(26) = 89. a(27) = 339+6. a(28) = 847+67. a(34) = 9734+1655+11. a(35) = 7412+174. - _R. J. Mathar_, Feb 22 2021
Cf.
A131482 (number of n-celled polyominoes with perimeter 2n+2),
A131488 (analog for hexagonal tiling).
A304195
Number of fully-leafed free tree-like polyominoes of size n.
Original entry on oeis.org
1, 1, 2, 1, 1, 2, 12, 3, 1, 6, 74, 11, 2, 21, 408, 40, 4, 76, 2053, 148, 11, 279
Offset: 1
a(5) = 1:
. #
. ###
. #
a(6) = 2:
. # . #
. #### . ####
. # . #
a(7) = 12:
. # # . # # . # # . # . # . #
. ### . #### . ##### . ##### . ##### . #####
. # # . # . . # . # . #
.
. # # . # # . # . # . # . #
. #### . #### . # . ## . ## . #####
. # . # . #### . ### . ### . #
. . . # . # . # .
- Alexandre Blondin Massé, Julien de Carufel, Alain Goupil, and Maxime Samson. Fully-leafed tree-like polyominoes and polycubes. In Combinatorial algorithms, volume 10765 of Lecture Notes of Computer Science, 28th International workshop, IWOCA 2017, Newcastle, NSW, Australia, Springer, 2018.
Cf.
A131482 (free tree-like polyominoes),
A304197,
A304199 (fully-leafed free tree-like polycubes in 3 and 4 dimensions resp.).
A304198
Number of free tree-like 4d-polycubes of size n.
Original entry on oeis.org
1, 1, 2, 6, 24, 122, 838, 6759, 61600, 600875, 6139448
Offset: 1
- Alexandre Blondin Massé, Julien de Carufel, Alain Goupil, and Maxime Samson, Fully-leafed tree-like polyominoes and polycubes, In Combinatorial algorithms, volume 10765 of Lecture Notes of Computer Science, 28th International workshop, IWOCA 2017, Newcastle, NSW, Australia, Springer, 2018.
Cf.
A191094 (fixed tree-like 4d-polycubes),
A131482 (free tree-like polyominoes),
A304196 (free tree-like 3d-polycubes).
A130622
Number of polyominoes with perimeter at most 2n.
Original entry on oeis.org
0, 1, 2, 5, 11, 36, 122, 538, 2526, 13166, 71153, 400109, 2300430, 13504780, 80547558, 487327904
Offset: 1
Cf.
A131482 (number of n-celled polyominoes with perimeter 2n+2).
Cf.
A130866 (number of polyominoes with at most n cells).
A135942
Number of n-celled polyominoes with perimeter < 2n+2.
Original entry on oeis.org
0, 0, 0, 1, 1, 8, 25, 114, 438, 1826, 7339, 29876, 120346, 485155, 1947974, 7812084, 31267765
Offset: 1
A350030
a(n) is the number of n-celled unholey treelike polyominoes.
Original entry on oeis.org
1, 1, 2, 4, 11, 27, 82, 250, 815, 2685, 9072, 30889, 106290, 367733, 1279573, 4470304, 15676760, 55147665
Offset: 1
Cf.
A308300 (number of simply connected square animals with n cells and k internal vertices, triangle read by rows).
Cf.
A131482 (polyominoes with perimeter 2n+2, i.e., treelike).
A359522
Number of free, holey, treelike polyominoes of n cells.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 5, 32, 144, 662, 2835, 11955, 49083, 199029, 796867, 3163384, 12463807
Offset: 1
a(7) = 1 because of the holey heptomino.
Showing 1-10 of 12 results.
Comments