A131492 Numbers n such that the sum of the Carmichael lambda functions of the divisors is a proper divisor of n.
140, 189, 378, 1375, 2750, 2775, 2997, 4524, 5550, 5661, 5994, 6375, 11253, 11322, 12750, 13416, 13505, 22506, 25925, 27010, 27511, 30613, 32208, 32513, 32760, 45917, 49665, 49959, 51850, 55022, 61061, 61226, 65026, 67488, 91834, 93605
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- W. D. Banks and F. Luca, On integers with a special divisibility property, Archivum Mathematicum (BRNO) 42 (2006) pp 31-42.
Programs
-
Mathematica
Select[ Range[100000], Divisible[#, s = Total[ CarmichaelLambda /@ Divisors[#]]] && s < # &] (* Jean-François Alcover, Jun 24 2013 *)
-
PARI
lambda(p,alpha)={ if(p>=3 || alpha<=2, return(p^(alpha-1)*(p-1)), return(2^(alpha-2)) ; ) ; } A002322(n)={ local(pf,rmax,resul) ; if(n==1, return(1) ) ; pf=factor(n) ; rmax=matsize(pf)[1] ; resul= lambda(pf[1,1],pf[1,2]) ; for(r=2,rmax, resul=lcm(resul,lambda(pf[r,1],pf[r,2])) ; ) ; return(resul) ; } b(n)={ sumdiv(n,d,A002322(d)) ; } { for(n=1,120000, l=b(n) ; if( l != 1 && l != n && n%l==0, print1(n,",") ) ; ) ; }
Formula
n such that (sum_{d|n} A002322(d)) | n.
Comments