cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131492 Numbers n such that the sum of the Carmichael lambda functions of the divisors is a proper divisor of n.

Original entry on oeis.org

140, 189, 378, 1375, 2750, 2775, 2997, 4524, 5550, 5661, 5994, 6375, 11253, 11322, 12750, 13416, 13505, 22506, 25925, 27010, 27511, 30613, 32208, 32513, 32760, 45917, 49665, 49959, 51850, 55022, 61061, 61226, 65026, 67488, 91834, 93605
Offset: 1

Views

Author

R. J. Mathar, Jul 29 2007

Keywords

Comments

The auxiliary sequence defined by b(n)=sum_{d|n} A002322(d) starts 1,2,3,4,5,6,7,6,9,10,11,10,13,14,11,10,17,18,19,16,...
The auxiliary sequence is A141258. [Reinhard Zumkeller, Feb 17 2012]

Crossrefs

Programs

  • Mathematica
    Select[ Range[100000], Divisible[#, s = Total[ CarmichaelLambda /@ Divisors[#]]] && s < # &] (* Jean-François Alcover, Jun 24 2013 *)
  • PARI
    lambda(p,alpha)={ if(p>=3 || alpha<=2, return(p^(alpha-1)*(p-1)), return(2^(alpha-2)) ; ) ; } A002322(n)={ local(pf,rmax,resul) ; if(n==1, return(1) ) ; pf=factor(n) ; rmax=matsize(pf)[1] ; resul= lambda(pf[1,1],pf[1,2]) ; for(r=2,rmax, resul=lcm(resul,lambda(pf[r,1],pf[r,2])) ; ) ; return(resul) ; } b(n)={ sumdiv(n,d,A002322(d)) ; } { for(n=1,120000, l=b(n) ; if( l != 1 && l != n && n%l==0, print1(n,",") ) ; ) ; }

Formula

n such that (sum_{d|n} A002322(d)) | n.