A131543 Exponent of least power of 2 having exactly n consecutive 9's in its decimal representation.
0, 12, 33, 50, 421, 422, 2187, 15554, 42483, 42485, 42486, 1522085, 2662514, 6855863, 6855865
Offset: 0
Examples
a(3)=50 because 2^50 (i.e. 1125899906842624) is the smallest power of 2 to contain a run of 3 consecutive nines in its decimal form.
Links
- Popular Computing (Calabasas, CA), Two Tables, Vol. 1, (No. 9, Dec 1973), page PC9-16.
Crossrefs
Cf. A006889.
Programs
-
Mathematica
a = ""; Do[ a = StringJoin[a, "9"]; b = StringJoin[a, "9"]; k = 1; While[ StringPosition[ ToString[2^k], a] == {} || StringPosition[ ToString[2^k], b] != {}, k++ ]; Print[k], {n, 1, 10} ]
Extensions
a(11) from Sean A. Irvine, May 31 2010
a(12)-a(14) from Lars Blomberg, Jan 24 2013
a(0)=0 prepended by Paul Geneau de Lamarlière, Jul 20 2024
Comments