A131635 Triangle T(n,m)=m*n*binomial(m+n,m)^2/(2*(m+n)) read by rows.
1, 3, 18, 6, 60, 300, 10, 150, 1050, 4900, 15, 315, 2940, 17640, 79380, 21, 588, 7056, 52920, 291060, 1280664, 28, 1008, 15120, 138600, 914760, 4756752, 20612592, 36, 1620, 29700, 326700, 2548260, 15459444, 77297220, 331273800, 45, 2475, 54450
Offset: 1
Examples
Triangle is symmetric in the two indices and starts 1, 3, 18, 6, 60, 300, 10, 150, 1050, 4900, 15, 315, 2940, 17640, 79380, 21, 588, 7056, 52920, 291060, 1280664,
Links
- V. J. W. Guo and J. Zeng, A note on two identities arising from enumeration of convex polyominoes, J. Comp. Appl. Math. 180 (2005) pp 413-423.
Programs
-
Maple
a := proc(n,m) m*n*(binomial(m+n,n))^2/2/(m+n) ; end: for n from 1 to 10 do for m from 1 to n do printf("%d, ",a(n,m)) ; od: od:
-
Mathematica
Flatten[Table[m*n*Binomial[m+n,m]^2/(2(m+n)),{n,10},{m,n}]] (* Harvey P. Dale, Dec 24 2011 *)
-
PARI
A131635(n,m) = m*n*binomial(m+n,m)^2/(2*(m+n))
Comments