A131660 Positions at which the sum of the digits of e up to that point equals the sum of the digits of Pi up to that point.
218, 241, 264, 269, 280, 287, 354, 1159, 1836, 1871, 1872, 1886, 1891, 1892, 1914, 5023, 5026, 5039, 9165, 9170, 9171, 9180, 15166, 17909, 91192, 91194, 91277, 91289, 91290, 91293, 92029, 92031, 92033, 92038, 93913, 93927, 93928, 97369, 97839
Offset: 1
Examples
a(1)=218 because the sum of the first 218 digits of e (including the initial 2) equals 987. That is the same result for the first 218 digits of Pi (including the initial 3).
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..4105.
- Eric Weisstein's World of Mathematics, e.
- Eric Weisstein's World of Mathematics, PI.
Programs
-
Mathematica
de = First@ RealDigits[E, 10, 10^5]; dse = 0; dpi = First@ RealDigits[Pi, 10, 10^5]; dspi = 0; lst = {}; Do[ dse = dse + de[[n]]; dspi = dspi + dpi[[n]]; If[dse == dspi, AppendTo[lst, n]; Print@n], {n, 10^5}] (* Robert G. Wilson v, Sep 16 2007 *) Module[{nn=100000,ed,pd},ed=Accumulate[RealDigits[E,10,nn][[1]]];pd= Accumulate[ RealDigits[Pi,10,nn][[1]]];Flatten[Position[Thread[ {ed,pd}], ?(#[[1]]==#[[2]]&),{1},Heads->False]]] (* _Harvey P. Dale, Feb 18 2015 *)
Extensions
More terms from Robert G. Wilson v, Sep 16 2007
a(6) corrected by N. J. A. Sloane, Nov 23 2007
Comments