A131672 a(n) is the smallest k >= 1 such that the expansion of the inverse of the k-th cyclotomic polynomial has n or -n as a coefficient, or -1 if no such k exists.
1, 561, 1155, 2145, 3795, 5005, 5005, 8645, 8645, 11305, 11305, 11305, 11305, 11305, 11305, 11305, 11305, 11305, 11305, 11305, 11305, 31395, 31395, 31395, 31395, 31395, 33495, 33495, 33495, 33495, 33495, 33495, 33495, 33495, 33495, 33495, 33495, 33495, 40755
Offset: 1
Keywords
Examples
The cyclotomic polynomial Phi_1(x) = 1-x (cf. A013595), so the inverse cyclotomic polynomial Psi_1(x) = 1 (cf. A306453), and so a(1) = 1. - _N. J. A. Sloane_, Jun 08 2021
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..341
- Pieter Moree, Reciprocal cyclotomic polynomials, arXiv:0709.1570 [math.NT], Sep 11 2007, table 1 (computed by Yves Gallot), p. 13.
Programs
-
PARI
a(n) = my(k=1); while((k%2==0) || (isprime(k)) || (!issquarefree(k)) || !setsearch(Set(abs(Vec((x^k-1)/polcyclo(k)))), n), k++); k \\ Jianing Song, May 26 2021
Extensions
New name from Jianing Song, May 26 2021
Terms a(22) onward from Robert G. Wilson v, Jun 09 2021
Comments