cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131685 a(n) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^n + n) / n! takes integral values for all i>=0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 1, 1, 1, 1, 1, 11, 11, 11, 55, 143, 13, 91, 91, 91, 91, 91, 1001, 17017, 595595, 595595, 17017, 46189, 600457, 3002285, 3002285, 3002285, 3002285, 6605027, 3002285, 726869, 726869, 726869
Offset: 1

Views

Author

Alexander R. Povolotsky and Peter J. C. Moses, Sep 12 2007, revised Sep 17 2007

Keywords

Comments

It appears that none of the terms are divisible by 3. - Alexander R. Povolotsky, Oct 18 2007

Crossrefs

Cf. A000027 (for n=1), A064808 (n=2), A131509 (n=3), A129995 (n=4), A131675 (n=5), ..., A131680 (n=10).
See also A049614.

Programs

  • Maple
    # Maple program from Cyril Banderier, Sep 18 2007:
    List:=NULL: for n from 1 to 1000 do m:=1: #running till n=50 will last 2 min.
    for i from 1 to numtheory[pi](n) do div:=ithprime(i): d:=1: e:=0: oldmini:=-1:mini:=0:
    while oldmini<>mini do e:=e+1: #the last time consuming loop could be skipped by proving e<=floor(ln(n)/ln(div)):
    d:=d*div;for x from 0 to d-1 do [seq((x &^k mod d)+k mod d,k=1..n)]:contrib[d,x]:=nops(select(has,%,0)): od:
    L:=seq(add(contrib[div^j,x mod div^j],j=1..e),x=0..div^e-1); oldmini:=mini: mini:=min(L): od:
    if mini
    				

Extensions

More terms from Cyril Banderier, Sep 17 2007