cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131749 Triangle of successive absolute differences of semiprimes.

Original entry on oeis.org

4, 2, 6, 1, 3, 9, 1, 2, 1, 10, 0, 1, 3, 4, 14, 1, 1, 0, 3, 1, 15, 0, 1, 2, 2, 5, 6, 21, 1, 1, 0, 2, 0, 5, 1, 22, 1, 0, 1, 1, 3, 3, 2, 3, 25, 1, 0, 0, 1, 0, 3, 0, 2, 1, 26, 1, 0, 0, 0, 1, 1, 4, 4, 6, 7, 33, 1, 0, 0, 0, 0, 1, 0, 4, 0, 6, 1, 34, 0, 1, 1, 1, 1, 1, 2, 2, 6, 6, 0, 1, 35
Offset: 1

Views

Author

Jonathan Vos Post, Oct 23 2007

Keywords

Comments

Semiprime analog of A036262. The conjecture analogous to Gilbreath's conjecture is that the leading term (after the second row) is always 0 or 1. First diagonal is semiprimes (A001358). Second diagonal is first differences of semiprimes (A065516).

Examples

			Table begins:
4  6  9 10 14 15 21 22 25 26 33 34 35 38 39 46 49 51 55 57 58 62 65 69 74 77 82 85
2  3  1  4  1  6  1  3  1  7  1  1  3  1  7  3  2  4  2  1  4  3  4  5  3  5  3
1  2  3  3  5  5  2  2  6  6  0  2  2  6  4  1  2  2  1  3  1  1  1  2  2  2
1  1  0  2  0  3  0  4  0  6  2  0  4  2  3  1  0  1  2  2  0  0  1  0  0
0  1  2  2  3  3  4  4  6  4  2  4  2  1  2  1  1  1  0  2  0  1  1  0
1  1  0  1  0  1  0  2  2  2  2  2  1  1  1  0  0  1  2  2  1  0  1
0  1  1  1  1  1  2  0  0  0  0  1  0  0  1  0  1  1  0  1  1  1
1  0  0  0  0  1  2  0  0  0  1  1  0  1  1  1  0  1  1  0  0
1  0  0  0  1  1  2  0  0  1  0  1  1  0  0  1  1  0  1  0
1  0  0  1  0  1  2  0  1  1  1  0  1  0  1  0  1  1  1
1  0  1  1  1  1  2  1  0  0  1  1  1  1  1  1  0  0
1  1  0  0  0  1  1  1  0  1  0  0  0  0  0  1  0
0  1  0  0  1  0  0  1  1  1  0  0  0  0  1  1
1  1  0  1  1  0  1  0  0  1  0  0  0  1  0
0  1  1  0  1  1  1  0  1  1  0  0  1  1
1  0  1  1  0  0  1  1  0  1  0  1  0
1  1  0  1  0  1  0  1  1  1  1  1
0  1  1  1  1  1  1  0  0  0  0
1  0  0  0  0  0  1  0  0  0
1  0  0  0  0  1  1  0  0
1  0  0  0  1  0  1  0
1  0  0  1  1  1  1
1  0  1  0  0  0
1  1  1  0  0
0  0  1  0
0  1  1
1  0
1
etc.
		

Crossrefs

Programs

  • Mathematica
    SemiPrimePi[n_] := Sum[ PrimePi[n/Prime[i]] - i + 1, {i, PrimePi[ Sqrt[n]]}]; SemiPrime[n_] := Block[{e = Floor[Log[2, n] + 1], a, b}, a = 2^e; Do[b = 2^p; While[SemiPrimePi@a < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; t[0, n_] := SemiPrime[n]; t[r_, c_] := Abs[t[r - 1, c] - t[r - 1, c + 1]]; Table[t[r - c, c], {r, 13}, {c, r}] // Flatten
    (* to construct the table as shown *) mx = 13; Table[t[r, c], {r, 0, mx - 1}, {c, mx - r}] // TableForm (* Robert G. Wilson v, Jun 13 2018 *)