cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A131822 Increment each prime factor for each term of the least prime signature sequence derived from A080577.

Original entry on oeis.org

1, 3, 9, 15, 27, 45, 105, 81, 135, 225, 315, 1155, 243, 405, 675, 945, 1575, 3465, 15015, 729, 1215, 2025, 2835, 3375, 4725, 10395, 11025, 17325, 45045, 255255, 2187, 3645, 6075, 8505, 10125, 14175, 31185, 23625, 33075, 51975, 135135, 121275, 225225
Offset: 1

Views

Author

Alford Arnold, Jul 19 2007

Keywords

Examples

			The term 30 = 2*3*5 becomes 105 = 3*5*7.
From A080577 we obtain
   1
   2
   4,  6
   8, 12, 30
  16, 24, 36, 60, ...
  etc.
so the sequence begins
   1
   3
   9,  15
  27,  45, 105
  81, 135, 225, 315, ...
  etc.
		

Crossrefs

Programs

  • Maple
    A003961 := proc(n) local ifs,i ; ifs := ifactors(n)[2] ; mul(nextprime(op(1,i))^op(2,i), i=ifs) ; end: A036042 := proc(n) local a, nredu ; a := 0 ; nredu := n+1 ; while nredu > 0 do nredu := nredu-combinat[numbpart](a) ; a := a+1 ; od: RETURN(a-1) ; end: A036035 := proc(n) local row,idx,pa,a,i ; if n = 0 then 1 ; else row := A036042(n) ; idx := n-add(combinat[numbpart](i),i=0..row-1) ; pa := op(-idx-1,combinat[partition](row)) ; a := 1; for i from 1 to nops(pa) do a := a*ithprime(i)^op(-i,pa) ; od; RETURN(a) ; fi ; end: A131822 := proc(n) A003961(A036035(n-1)) ; end: seq(A131822(n),n=1..80) ; # R. J. Mathar, Nov 11 2007

Formula

a(n) = A003961(A036035(n-1)). - R. J. Mathar, Nov 11 2007

Extensions

Corrected and extended by R. J. Mathar, Nov 11 2007

A131886 Rearrange the rows of array A077569 by sorting the values on each row by noting the odd part of each signature and sorting as in A131822.

Original entry on oeis.org

1, 2, 4, 8, 6, 16, 32, 12, 64, 128, 24, 30, 256, 36, 512, 48, 1024, 2048, 96, 72, 60, 4096, 8192, 192, 16384, 144, 32768, 384, 120, 216, 210, 65536, 131072, 768, 288, 180, 262144, 524288, 1536, 240, 432, 1048576, 576, 2097152, 3072, 4194304, 8388608
Offset: 1

Views

Author

Alford Arnold, Aug 15 2007

Keywords

Comments

The shape sequence for both arrays is A001055.

Examples

			A077569 begins
  1
  2
  4
  6, 8
  ...
so this triangle begins
    1
    2
    4
    8,  6
   16
   32, 12
   64
  128, 24, 30
  ...
		

Crossrefs

Showing 1-2 of 2 results.