A131890 a(n) is the number of shapes of balanced trees with constant branching factor 4 and n nodes. The node is balanced if the size, measured in nodes, of each pair of its children differ by at most one node.
1, 1, 4, 6, 4, 1, 16, 96, 256, 256, 1536, 3456, 3456, 1296, 3456, 3456, 1536, 256, 256, 96, 16, 1, 64, 1536, 16384, 65536, 1572864, 14155776, 56623104, 84934656, 905969664, 3623878656, 6442450944, 4294967296, 17179869184, 25769803776, 17179869184, 4294967296
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1365
- Jeffrey Barnett, Counting Balanced Tree Shapes
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; local m, r; if n<2 then 1 else r:= iquo(n-1, 4, 'm'); binomial(4, m) *a(r+1)^m *a(r)^(4-m) fi end: seq(a(n), n=0..50); # Alois P. Heinz, Apr 10 2013
-
Mathematica
a[n_, k_] := a[n, k] = Module[{m, r}, If[n < 2 || k == 1, 1, If[k == 0, 0, {r, m} = QuotientRemainder[n - 1, k]; Binomial[k, m]*a[r + 1, k]^m*a[r, k]^(k - m)]]]; a[n_] := a[n, 4]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jun 04 2018, after Alois P. Heinz *)
Formula
a(0) = a(1) = 1; a(4n+1+m) = (4 choose m) * a(n+1)^m * a(n)^(4-m), where n >= 0 and 0 <= m <= 4.