A131939 Least k such that the difference between consecutive 3-almost primes A014612(k) equals n, or 0 if no such k exists.
5, 3, 13, 1, 10, 2, 4, 31, 32, 36, 12, 7, 136, 19, 302, 486, 1094, 73, 1366, 6763, 1092, 2006, 8924, 4785, 18345, 18487, 42798, 16571, 11095, 57831, 60912, 4528, 24846, 41304, 232350, 233678, 123279, 1779265, 740729, 177385, 1015228, 1772286
Offset: 1
Keywords
Examples
a(1) = 5 because A014612(6)-A014612(5) = 28-27 = 1. a(2) = 3 because A014612(4)-A014612(3) = 20-18 = 2. a(3) = 13 because 66-63 = 3. a(4) = 1 because 12-8 = 4. a(5) = 10 because 50-45 = 5. a(6) = 2 because 18-12 = 6. a(7) = 4 because 27-20 = 7. a(8) = 31 because 138-130 = 8. a(9) = 32 because 147-138 = 9 a(10) = 36 because 164-154 = 10.
Programs
-
Mathematica
p3=Select[Range[2*10^6],PrimeOmega[#]==3&];s={};Do[d=0;Until[p3[[d+1]]-p3[[d]]==n,d++];AppendTo[s,d],{n,37}];s (* James C. McMahon, Mar 02 2025 *)
Formula
Extensions
More terms from R. J. Mathar, Oct 07 2007
Comments