cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131962 Expansion of psi(x) * phi(-x^12) / chi(-x^4) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 0, 2, 1, 0, 0, 1, 1, 1, 2, 0, 2, 0, 1, 1, 0, 2, 2, 1, 1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 2, 3, 0, 1, 0, 1, 1, 1, 2, 0, 1, 1, 1, 1, 0, 3, 1, 1, 2, 0, 0, 1, 2, 0, 0, 1, 1, 2, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 2
Offset: 0

Views

Author

Michael Somos, Aug 02 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + 2*x^10 + x^11 + ...
G.f. = q^7 + q^31 + q^79 + q^103 + q^127 + q^151 + q^175 + q^199 + q^223 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 24 n + 7}, DivisorSum[ m, KroneckerSymbol[ -12, #] Mod[m/#, 2] &] / 2]]; (* Michael Somos, Nov 06 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^8] EllipticTheta[ 4, 0, x^12] QPochhammer[ -x, x^2], {x, 0, n}]; (* Michael Somos, Nov 06 2015 *)
    a[ n_] := SeriesCoefficient[ (1/2) x^(-1/8) EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 4, 0, x^12] QPochhammer[ -x^4, x^4], {x, 0, n}]; (* Michael Somos, Nov 06 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 24*n + 7; sumdiv(n, d, kronecker( -12, d) * (n/d %2)) / 2)};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^8 + A) * eta(x^12 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^24 + A)), n))};

Formula

Expansion of q^(-7/24) * eta(q^2)^2 * eta(q^8) * eta(q^12)^2/( eta(q) * eta(q^4) * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [ 1, -1, 1, 0, 1, -1, 1, -1, 1, -1, 1, -2, 1, -1, 1, -1, 1, -1, 1, 0, 1, -1, 1, -2, ...].
a(25*n + 7) = a(n). a(25*n + 2) = a(25*n + 12) = a(25*n + 17) = a(25*n + 22) = 0.
2 * a(n) = A123484(24*n + 7).
Expansion of chi(x) * f(-x^8) * phi(-x^12) in powers of x where phi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Nov 06 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Jan 20 2025