cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131963 Expansion of f(x, x^2) * f(x^4, x^12) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 0, 1, 2, 1, 1, 1, 1, 1, 0, 2, 0, 0, 1, 0, 2, 1, 3, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 2, 0, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 3, 0, 1, 0, 0, 1, 2, 2, 0, 1, 1, 2
Offset: 0

Views

Author

Michael Somos, Aug 02 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^2 + x^4 + 2*x^5 + x^6 + x^7 + x^9 + x^11 + 2*x^12 + x^13 + ...
G.f. = q^13 + q^37 + q^61 + q^109 + 2*q^133 + q^157 + q^181 + q^229 + q^277 + ...
		

Crossrefs

Cf. A123484.

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 24 n + 13}, DivisorSum[ m, KroneckerSymbol[ -12, #] Mod[m/#, 2] &] / 2]]; (* Michael Somos, Nov 04 2015 *)
    a[ n_] := SeriesCoefficient[(1/2) x^(-1/2) EllipticTheta[ 4, 0, x^3] QPochhammer[ -x, x] EllipticTheta[ 2, 0, x^2], {x, 0, n}]; (* Michael Somos, Nov 04 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 24*n + 13; sumdiv(n, d, kronecker( -12, d) * (n/d %2)) / 2)};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^8 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)), n))};

Formula

Expansion of psi(x^4) * phi(-x^3) / chi(-x) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of q^(-13/24) * eta(q^2) * eta(q^3)^2 * eta(q^8)^2 / (eta(q) * eta(q^4) * eta(q^6)) in powers of q.
Euler transform of period 24 sequence [ 1, 0, -1, 1, 1, -1, 1, -1, -1, 0, 1, 0, 1, 0, -1, -1, 1, -1, 1, 1, -1, 0, 1, -2, ...].
a(25*n + 13) = a(n). a(25*n + 3) = a(25*n + 8) = a(25*n + 18) = a(25*n + 23) = 0.
2 * a(n) = A123484(24*n + 13).