A131964 Expansion of f(x^2, x^10) / f(x, x^3) in powers of x where f(, ) is Ramanujan's general theta function.
1, 1, 1, 2, 0, 1, 1, 0, 1, 0, 2, 1, 1, 1, 0, 1, 2, 2, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 2, 1, 1, 0, 1, 1, 1, 3, 0, 0, 0, 2, 1, 1, 2, 1, 2, 1, 0, 0, 0, 2, 1, 0, 2, 0, 2, 0, 0, 1, 1, 0, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 0, 0, 0, 2, 1, 2, 0, 2, 2, 1, 1, 0, 0, 1
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^2 + 2*x^3 + x^5 + x^6 + x^8 + 2*x^10 + x^11 + x^12 + x^13 + ... G.f. = q^19 + q^43 + q^67 + 2*q^91 + q^139 + q^163 + q^211 + 2*q^259 + q^283 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A123484.
Programs
-
Mathematica
a[ n_] := If[ n < 0, 0, With[ {m = 24 n + 19}, DivisorSum[ m, KroneckerSymbol[ -12, #] Mod[m/#, 2] &] / 2]]; (* Michael Somos, Nov 03 2015 *) a[ n_] := SeriesCoefficient[ 2^(-1/2) x^(-3/4) EllipticTheta[ 4, 0, x^4] QPochhammer[ -x, x] EllipticTheta[ 2, Pi/4, x^3], {x, 0, n}]; (* Michael Somos, Nov 03 2015 *)
-
PARI
{a(n) = if( n<0, 0, n = 24*n + 19; sumdiv(n, d, kronecker( -12, d) * (n/d %2)) / 2)};
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 * eta(x^6 + A) * eta(x^24 + A) / (eta(x + A) * eta(x^8 + A) * eta(x^12 + A)), n))};
Formula
Expansion of phi(-x^4) * psi(-x^6) / chi(-x) in powers of x where phi(), chi() are Ramanujan theta functions.
Expansion of q^(-19/24) * eta(q^2) * eta(q^4)^2 * eta(q^6) * eta(q^24) / (eta(q) * eta(q^8) * eta(q^12)) in powers of q.
Euler transform of period 24 sequence [ 1, 0, 1, -2, 1, -1, 1, -1, 1, 0, 1, -2, 1, 0, 1, -1, 1, -1, 1, -2, 1, 0, 1, -2, ...].
a(25*n + 19) = a(n). a(25*n + 4) = a(25*n + 9) = a(25*n + 14) = a(25*n + 24) = 0.
2 * a(n) = A123484(24*n + 19).
Comments