cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131996 Number of partitions of n into distinct powers of 2 or of 3.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 12
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 06 2007

Keywords

Comments

a(A081601(n+1)) = n+1 and a(m) < n+1 for m < A081601(n+1).

Examples

			a(10) = #{9+1,8+2,4+3+2+1}=3;
a(20) = #{16+4,16+3+1,9+8+3,9+8+2+1}=4;
a(30) = #{27+3,27+2+1,16+9+4+1,16+9+3+2,16+8+4+2,16+8+3+2+1}=6.
		

Crossrefs

Programs

  • Maple
    g:=(product((1+x^(2^k))*(1+x^(3^k)),k=0..10))/(1+x): gser:=series(g,x=0,111): seq(coeff(gser,x,n),n=1..108); # Emeric Deutsch, Aug 26 2007
  • Mathematica
    max = 100; Product[((1 + x^(2^k)) (1 + x^(3^k))), {k, 0, Log[2, max] // Ceiling}]/(1 + x) + O[x]^max // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Sep 30 2016 *)

Formula

G.f.: Product_{k>=0} ((1+x^(2^k))(1+x^(3^k)))/(1+x) (offset 0). - Emeric Deutsch, Aug 26 2007