A132009 a(1) = 1; for n>=2, a(n) = n-th positive integer which is coprime to the largest prime divisor of n.
1, 3, 4, 7, 6, 8, 8, 15, 13, 12, 12, 17, 14, 16, 18, 31, 18, 26, 20, 24, 24, 24, 24, 35, 31, 28, 40, 32, 30, 37, 32, 63, 36, 36, 40, 53, 38, 40, 42, 49, 42, 48, 44, 48, 56, 48, 48, 71, 57, 62, 54, 56, 54, 80, 60, 65, 60, 60, 60, 74, 62, 64, 73, 127, 70, 72, 68, 72, 72, 81, 72, 107
Offset: 1
Keywords
Examples
The largest prime dividing 12 is 3. The positive integers which are coprime to 3 are 1,2,4,5,7,8,10,11,13,14,16,17,19,20,... The 12th of these is 17, so a(12) = 17.
Programs
-
Maple
A126572 := proc(n,k) local f,i ; f := 1 ; for i from 1 do if gcd(i,n) = 1 then if f = k then RETURN(i) ; fi ; f := f+1 ; fi ; od: end: A006530 := proc(n) if n = 1 then 1; else max(seq(op(1,i),i=ifactors(n)[2]) ) ; fi ; end: A132009 := proc(n) local p ; p := A006530(n) ; A126572(p,n) ; end: seq(A132009(n),n=1..100) ; # R. J. Mathar, Nov 09 2007
-
Mathematica
a = {1}; For[n = 2, n < 70, n++, b = FactorInteger[n][[ -1, 1]]; c = 0; i = 1; While[c < n, If[GCD[i, b] == 1, c++ ]; i++ ]; AppendTo[a, i - 1]]; a (* Stefan Steinerberger, Nov 04 2007 *)
Formula
Extensions
More terms from Stefan Steinerberger and R. J. Mathar, Nov 04 2007