cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132009 a(1) = 1; for n>=2, a(n) = n-th positive integer which is coprime to the largest prime divisor of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 8, 8, 15, 13, 12, 12, 17, 14, 16, 18, 31, 18, 26, 20, 24, 24, 24, 24, 35, 31, 28, 40, 32, 30, 37, 32, 63, 36, 36, 40, 53, 38, 40, 42, 49, 42, 48, 44, 48, 56, 48, 48, 71, 57, 62, 54, 56, 54, 80, 60, 65, 60, 60, 60, 74, 62, 64, 73, 127, 70, 72, 68, 72, 72, 81, 72, 107
Offset: 1

Views

Author

Leroy Quet, Oct 29 2007

Keywords

Examples

			The largest prime dividing 12 is 3. The positive integers which are coprime to 3 are 1,2,4,5,7,8,10,11,13,14,16,17,19,20,... The 12th of these is 17, so a(12) = 17.
		

Programs

  • Maple
    A126572 := proc(n,k) local f,i ; f := 1 ; for i from 1 do if gcd(i,n) = 1 then if f = k then RETURN(i) ; fi ; f := f+1 ; fi ; od: end: A006530 := proc(n) if n = 1 then 1; else max(seq(op(1,i),i=ifactors(n)[2]) ) ; fi ; end: A132009 := proc(n) local p ; p := A006530(n) ; A126572(p,n) ; end: seq(A132009(n),n=1..100) ; # R. J. Mathar, Nov 09 2007
  • Mathematica
    a = {1}; For[n = 2, n < 70, n++, b = FactorInteger[n][[ -1, 1]]; c = 0; i = 1; While[c < n, If[GCD[i, b] == 1, c++ ]; i++ ]; AppendTo[a, i - 1]]; a (* Stefan Steinerberger, Nov 04 2007 *)

Formula

a(n)=A126572(A006530(n),n). - R. J. Mathar, Nov 09 2007

Extensions

More terms from Stefan Steinerberger and R. J. Mathar, Nov 04 2007