A132015
Number of partitions of n into distinct parts such that u^2 < v for all pairs (u,v) of parts with u
1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 18, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 22, 23, 24, 24, 24, 24, 24
Offset: 1
Keywords
Examples
a(10) = #{10, 9+1, 8+2, 7+2+1} = 4; a(11) = #{11, 10+1, 9+2, 8+2+1} = 4; a(12) = #{12, 11+1, 10+2, 9+2+1} = 4; a(13) = #{13, 12+1, 11+2, 10+3, 10+2+1} = 5; a(14) = #{14, 13+1, 12+2, 11+3, 11+2+1, 10+3+1} = 6; a(15) = #{15, 14+1, 13+2, 12+3, 12+2+1, 11+3+1} = 6.
Links
- R. Zumkeller, Table of n, a(n) for n = 1..10000
Formula
a(n) = f(n,1) with f(m,p) = if p=m then 1 else (if p
Comments