cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132024 Decimal expansion of Product_{k>=0} (1-1/(2*8^k)).

Original entry on oeis.org

4, 6, 4, 5, 6, 8, 8, 8, 3, 6, 8, 6, 4, 7, 6, 3, 9, 0, 9, 8, 1, 9, 5, 9, 5, 6, 9, 7, 4, 8, 4, 7, 8, 0, 1, 0, 8, 7, 0, 0, 5, 8, 5, 1, 5, 4, 9, 5, 1, 2, 3, 0, 6, 5, 5, 6, 6, 0, 8, 5, 6, 0, 5, 9, 7, 0, 6, 0, 9, 9, 5, 7, 6, 2, 7, 4, 4, 1, 5, 4, 3, 8, 4, 8, 7, 8, 8, 8, 1, 2, 5, 0, 7, 6, 2, 1, 9, 4, 7, 0, 8, 1, 7
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.46456888368647639098...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[QPochhammer[1/2,1/8],10,120][[1]] (* Harvey P. Dale, May 23 2011 *)
  • PARI
    prodinf(k=0, 1 - 1/(2*8^k)) \\ Amiram Eldar, May 09 2023

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_8(n))} floor(n/8^k)*8^k/n.
Equals lim inf_{n->oo} A132032(n)/n^(1+floor(log_8(n)))*8^(1/2*(1+floor(log_8(n)))*floor(log_8(n))).
Equals lim inf_{n->oo} A132032(n)/n^(1+floor(log_8(n)))*8^A000217(floor(log_8(n))).
Equals (1/2)*exp(-Sum_{n>0} 8^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals lim inf_{n->oo} A132032(n)/A132032(n+1).
Equals Product_{n>=0} (1 - 1/A013730(n)). - Amiram Eldar, May 09 2023

Extensions

Name corrected by Amiram Eldar, May 09 2023