A132032 Product{0<=k<=floor(log_8(n)), floor(n/8^k)}, n>=1.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 34, 36, 38, 40, 42, 44, 46, 72, 75, 78, 81, 84, 87, 90, 93, 128, 132, 136, 140, 144, 148, 152, 156, 200, 205, 210, 215, 220, 225, 230, 235, 288, 294, 300, 306, 312, 318, 324, 330, 392, 399, 406, 413, 420, 427, 434
Offset: 1
Keywords
Examples
a(70)=floor(70/8^0)*floor(70/8^1)*floor(70/8^2)=70*8*1=560; For n=75, 75=113(base-8) and so a(75)=113*11*1(base-8)=75*9*1=675.
Crossrefs
Formula
Recurrence: a(n)=n*a(floor(n/8)); a(n*8^m)=n^m*8^(m(m+1)/2)*a(n).
a(k*8^m)=k^(m+1)*8^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_8(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_8(n)))/8^((1+floor(log_8(n)))*floor(log_8(n))/2); equality holds for n=k*8^m, 0=0. b(n) can also be written n^(1+floor(log_8(n)))/8^A000217(floor(log_8(n))).
Also: a(n)<=3^((1-log_8(3))/2)*n^((1+log_8(n))/2) = 1.295758534...*8^A000217(log_8(n)), equality holds for n=3*8^m, m>=0.
a(n)>c*b(n), where c = 0.46456888368647639098... (see constant A132024).
Also: a(n)>c*2^(1/3)*n^((1+log_8(n))/2)=0.4645688836...*1.25992105...*8^A000217(log_8(n)).
lim inf a(n)/b(n)=0.46456888368647639098..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_8(n))/2)=0.46456888368647639098...*2^(1/3), for n-->oo.
lim sup a(n)/n^((1+log_8(n))/2)=sqrt(3)/3^log_8(sqrt(3))=1.295758534..., for n-->oo.
lim inf a(n)/a(n+1)=0.46456888368647639098... for n-->oo (see constant A132024).
Comments