A132033 Product{0<=k<=floor(log_9(n)), floor(n/9^k)}, n>=1.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 36, 38, 40, 42, 44, 46, 48, 50, 52, 81, 84, 87, 90, 93, 96, 99, 102, 105, 144, 148, 152, 156, 160, 164, 168, 172, 176, 225, 230, 235, 240, 245, 250, 255, 260, 265, 324, 330, 336, 342, 348, 354, 360, 366, 372
Offset: 1
Examples
a(85)=floor(85/9^0)*floor(85/9^1)*floor(85/9^2)=85*9*1=765; a(88)=792 since 88=107(base-9) and so a(88)=107*10*1(base-9)=88*9*1=792.
Crossrefs
Programs
-
Mathematica
Table[Product[Floor[n/9^k],{k,0,Floor[Log[9,n]]}],{n,62}] (* James C. McMahon, Mar 03 2025 *)
Formula
Recurrence: a(n)=n*a(floor(n/9)); a(n*9^m)=n^m*9^(m(m+1)/2)*a(n).
a(k*9^m)=k^(m+1)*9^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_9(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_9(n)))/9^((1+floor(log_9(n)))*floor(log_9(n))/2); equality holds for n=k*9^m, 0=0. b(n) can also be written n^(1+floor(log_9(n)))/9^A000217(floor(log_9(n))).
Also: a(n)<=3^(1/4)*n^((1+log_9(n))/2)=1.316074013...*9^A000217(log_9(n)), equality holds for n=3*9^m, m>=0.
a(n)>c*b(n), where c=0.4689451783670236932832800... (see constant A132024).
Also: a(n)>c*2^((1-log_9(2))/2)*n^((1+log_9(n))/2)=0.4689451783670...*1.267747616...*9^A000217(log_9(n)).
lim inf a(n)/b(n)=0.4689451783670236932832800..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_9(n))/2)=0.4689451783670236932832800...*sqrt(2)/2^log_9(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_9(n))/2)=3^(1/4)=1.316074013..., for n-->oo.
lim inf a(n)/a(n+1)=0.4689451783670236932832800... for n-->oo (see constant A132025).
A054897 a(n) = Sum_{k>0} floor(n/8^k).
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12
Offset: 0
Keywords
Comments
Different from the highest power of 8 dividing n!, A090617.
Examples
a(100) = 13. a(10^3) = 141. a(10^4) = 1427. a(10^5) = 14284. a(10^6) = 142855. a(10^7) = 1428569. a(10^8) = 14285710. a(10^9) = 142857138.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Magma
m:=8; function a(n) // a = A054897 if n eq 0 then return n; else return a(Floor(n/m)) + Floor(n/m); end if; end function; [a(n): n in [0..103]]; // G. C. Greubel, Apr 28 2023
-
Mathematica
Table[t=0; p=8; While[s=Floor[n/p]; t=t+s; s>0, p *= 8]; t, {n,0,100}]
-
Python
def A054897(n): return (n-sum(int(d) for d in oct(n)[2:]))//7 # Chai Wah Wu, Jul 09 2022
-
SageMath
m=8 # a = A054897 def a(n): return 0 if (n==0) else a(n//m) + (n//m) [a(n) for n in range(104)] # G. C. Greubel, Apr 28 2023
Formula
a(n) = floor(n/8) + floor(n/64) + floor(n/512) + floor(n/4096) + ....
a(n) = (n - A053829(n))/7.
From Hieronymus Fischer, Aug 14 2007: (Start)
Recurrence:
a(n) = floor(n/8) + a(floor(n/8));
a(8*n) = n + a(n);
a(n*8^m) = n*(8^m-1)/7 + a(n).
a(k*8^m) = k*(8^m-1)/7, for 0 <= k < 8, m >= 0.
Asymptotic behavior:
a(n) = n/7 + O(log(n)),
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/7; equality holds for powers of 8.
a(n) >= (n-7)/7 - floor(log_8(n)); equality holds for n=8^m-1, m>0.
lim inf (n/7 - a(n)) = 1/7, for n -> oo.
lim sup (n/7 - log_8(n) - a(n)) = 0, for n -> oo.
lim sup (a(n+1) - a(n) - log_8(n)) = 0, for n -> oo.
G.f.: g(x) = ( Sum_{k>0} x^(8^k)/(1-x^(8^k)) )/(1-x). (End)
Partial sums of A244413. - R. J. Mathar, Jul 08 2021
Extensions
Examples added by Hieronymus Fischer, Jun 06 2012
A132024 Decimal expansion of Product_{k>=0} (1-1/(2*8^k)).
4, 6, 4, 5, 6, 8, 8, 8, 3, 6, 8, 6, 4, 7, 6, 3, 9, 0, 9, 8, 1, 9, 5, 9, 5, 6, 9, 7, 4, 8, 4, 7, 8, 0, 1, 0, 8, 7, 0, 0, 5, 8, 5, 1, 5, 4, 9, 5, 1, 2, 3, 0, 6, 5, 5, 6, 6, 0, 8, 5, 6, 0, 5, 9, 7, 0, 6, 0, 9, 9, 5, 7, 6, 2, 7, 4, 4, 1, 5, 4, 3, 8, 4, 8, 7, 8, 8, 8, 1, 2, 5, 0, 7, 6, 2, 1, 9, 4, 7, 0, 8, 1, 7
Offset: 0
Examples
0.46456888368647639098...
Programs
-
Mathematica
RealDigits[QPochhammer[1/2,1/8],10,120][[1]] (* Harvey P. Dale, May 23 2011 *)
-
PARI
prodinf(k=0, 1 - 1/(2*8^k)) \\ Amiram Eldar, May 09 2023
Formula
Equals lim inf_{n->oo} Product_{k=0..floor(log_8(n))} floor(n/8^k)*8^k/n.
Equals lim inf_{n->oo} A132032(n)/n^(1+floor(log_8(n)))*8^(1/2*(1+floor(log_8(n)))*floor(log_8(n))).
Equals (1/2)*exp(-Sum_{n>0} 8^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals Product_{n>=0} (1 - 1/A013730(n)). - Amiram Eldar, May 09 2023
Extensions
Name corrected by Amiram Eldar, May 09 2023
A054900 a(n) = Sum_{j >= 1} floor(n/16^j).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Magma
m:=16; function a(n) // a = A054900, m = 16 if n eq 0 then return 0; else return a(Floor(n/m)) + Floor(n/m); end if; end function; [a(n): n in [0..127]]; // G. C. Greubel, Apr 28 2023
-
Mathematica
a[n_, m_]:= If[n==0, 0, a[Floor[n/m], m] +Floor[n/m]]; Table[a[n, 16], {n,0,127}] (* G. C. Greubel, Apr 28 2023 *)
-
SageMath
m=16 # a = A054900 def a(n): return 0 if (n==0) else a(n//m) + (n//m) [a(n) for n in range(128)] # G. C. Greubel, Apr 28 2023
Formula
a(n) = (n - A053836(n))/15.
From Hieronymus Fischer, Aug 14 2007: (Start)
Recurrence:
a(n) = a(floor(n/16)) + floor(n/16).
a(16*n) = a(n) + n.
a(n*16^m) = a(n) + n*(16^m - 1)/15.
a(k*16^m) = k*(16^m - 1)/15, for 0 <= k < 16, m>=0.
Asymptotic behavior:
a(n) = n/15 + O(log(n)).
a(n+1) - a(n) = O(log(n)) (this follows from the inequalities below).
a(n) <= (n-1)/15; equality holds for powers of 16.
a(n) >= (n-15)/15 - floor(log_16(n)); equality holds for n = 16^m - 1, m > 0.
Limits:
lim inf (n/15 - a(n)) = 1/15, for n --> oo.
lim sup (n/15 - log_16(n) - a(n)) = 0, for n --> oo.
lim sup (a(n+1) - a(n) - log_16(n)) = 0, for n --> oo.
Series:
G.f.: (1/(1-x))*Sum_{k > 0} x^(16^k)/(1-x^(16^k)). (End)
Comments