cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A090623 Triangle of T(n,k) = [n/k] + [n/k^2] + [n/k^3] + [n/k^4] + ... for n, k > 1.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 4, 2, 1, 1, 1, 4, 2, 1, 1, 1, 1, 7, 2, 2, 1, 1, 1, 1, 7, 4, 2, 1, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 11, 5, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 11, 6, 3, 3, 2, 2, 1, 1, 1
Offset: 2

Views

Author

Henry Bottomley, Dec 06 2003

Keywords

Examples

			Rows start:
  1;
  1,1;
  3,1,1;
  3,1,1,1;
  4,2,1,1,1;
  4,2,1,1,1,1;
  7,2,2,1,1,1,1;
  7,4,2,1,1,1,1,1;
  8,4,2,2,1,1,1,1,1;
  ...
		

Crossrefs

Programs

  • Mathematica
    A090623[n_, k_] := Quotient[n - DigitSum[n, k], k - 1];
    Table[A090623[n, k], {n, 2, 15}, {k, 2, n}] (* Paolo Xausa, Sep 02 2025 *)
  • PARI
    T(n,k) = {my(s = 0, j = 1); while(p=n\k^j, s += p; j++); s;} \\ Michel Marcus, Feb 02 2016
    
  • PARI
    T(n,k) = (n - sumdigits(n,k))/(k-1) \\ Zhuorui He, Aug 25 2025

Formula

For p prime, T(n, p) = A090622(n, p) is the number of times that p is a factor of n!.
T(n,k) = (n - A240236(n, k))/(k - 1). - Zhuorui He, Aug 25 2025

Extensions

a(41) onward corrected by Zhuorui He, Aug 25 2025

A093391 a(n) = floor(n/16) + floor((n+1)/16) + floor((n+2)/16) + floor((n+3)/16).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 18, 19, 20, 20, 20, 20
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 28 2004

Keywords

Crossrefs

Programs

  • Haskell
    a093391 n = sum $ map ((flip div 16) . (+ n)) [0..3] -- Reinhard Zumkeller, Oct 10 2013
    
  • Magma
    [Floor(n/16)+Floor((n+1)/16)+Floor((n+2)/16)+Floor((n+3)/16): n in [0..100]]; // Vincenzo Librandi, Feb 16 2018
  • Mathematica
    Total/@(Floor/@(Partition[Range[0,90],4,1]/16)) (* Harvey P. Dale, Sep 21 2013 *)
    CoefficientList[Series[x^13 / ((1 + x^4) (x^8 + 1) (x - 1)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Feb 16 2018 *)
  • PARI
    a(n) = n\16 + (n+1)\16 + (n+2)\16 + (n+3)\16 \\ Andrew Howroyd, Feb 15 2018
    

Formula

From R. J. Mathar, Mar 22 2011: (Start)
a(n) = +2*a(n-1) -a(n-2) -a(n-4) +2*a(n-5) -a(n-6) -a(n-8) +2*a(n-9) -a(n-10) -a(n-12) +2*a(n-13) -a(n-14).
G.f.: x^13/ ( (1+x^4)*(x^8+1)*(x-1)^2 ).
(End)
Showing 1-2 of 2 results.