cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A275593 Shifts 2 places left under MNL transform.

Original entry on oeis.org

1, 1, 1, 2, 6, 30, 270, 5100, 229380, 27535260, 9496469340, 10086965678520, 34571745136244520, 403054252638271664040, 16565160940382442188713320, 2510059126960200448967150682000, 1444160075122431073529236697462766000
Offset: 1

Views

Author

Johannes W. Meijer, Aug 03 2016

Keywords

Comments

Shifts two places left under MNL transform, see A274760.
The Maple program is based on a program by Alois P. Heinz, see A007548 and A274804.

Crossrefs

Programs

  • Maple
    mnltr:= proc(p) local g; g:= proc(n) option remember; `if` (n=0, 1, add(((n-1)!/(n-k)!)*p(k) *g(n-k), k=1..n)): end: end: d := mnltr(c): c := n->`if`(n<=2, 1, d(n-2)): A275593 := n -> c(n): seq(A275593(n), n=1..16);
  • Mathematica
    mnltr[p_] := Module[{g}, g[n_] := g[n] = If[n == 0, 1, Sum[((n-1)!/(n-k)!)* p[k]*g[n-k], {k, 1, n}]]; g]; d = mnltr[a]; a[n_] := If[n <= 2, 1, d[n-2] ]; Array[a, 17] (* Jean-François Alcover, Nov 07 2017, translated from Maple *)

A275594 Shifts 3 places left under MNL transform.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 24, 144, 1464, 26808, 935184, 67404816, 10401844896, 3508019017056, 2732681228689152, 5018025242941566336, 21914759744001662937984, 238559201308551667344338304, 6565759935393013059564090526464
Offset: 1

Views

Author

Johannes W. Meijer, Aug 03 2016

Keywords

Comments

Shifts three places left under MNL transform, see A274760.
The Maple program is based on a program by Alois P. Heinz, see A007548 and A274804.

Crossrefs

Programs

  • Maple
    mnltr:= proc(p) local g; g:= proc(n) option remember; `if` (n=0, 1, add(((n-1)!/(n-k)!)*p(k) *g(n-k), k=1..n)): end: end: d := mnltr(c): c := n->`if`(n<=3, 1, d(n-3)): A275594 := n-> c(n): seq(A275594(n), n=1..19);
  • Mathematica
    mnltr[p_] := Module[{g}, g[n_] := g[n] = If [n == 0, 1, Sum[((n-1)!/(n-k)!) *p[k]*g[n-k], {k, 1 n}]]; g]; d = mnltr[c]; c [n_] := If[n <= 3, 1, d[n - 3]]; A275594[n_] := c[n]; Table[A275594[n], {n, 1, 19}] (* Jean-François Alcover, Jul 22 2017, translated from Maple *)
Showing 1-2 of 2 results.