A132045 Row sums of triangle A132044.
1, 2, 3, 6, 13, 28, 59, 122, 249, 504, 1015, 2038, 4085, 8180, 16371, 32754, 65521, 131056, 262127, 524270, 1048557, 2097132, 4194283, 8388586, 16777193, 33554408, 67108839, 134217702, 268435429, 536870884, 1073741795, 2147483618, 4294967265, 8589934560
Offset: 0
Examples
a(4) = 13 = sum of row 4 terms of triangle A132044: (1 + 3 + 5 + 3 + 1). a(4) = 13 = (1, 4, 6, 4, 1) dot (1, 1, 0, 2, 0) = (1 + 4 + 0 + 8 + 0).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Programs
-
Magma
[1] cat [2^n -n +1: n in [1..35]]; // G. C. Greubel, Feb 12 2021
-
Mathematica
Table[2^n -(n-1) -Boole[n==0], {n, 0, 35}] (* G. C. Greubel, Feb 12 2021 *)
-
PARI
Vec((1-2*x+2*x^3)/((1-x)^2*(1-2*x)) + O(x^100)) \\ Colin Barker, Mar 14 2014
-
Sage
[1]+[2^n -n +1 for n in (1..35)] # G. C. Greubel, Feb 12 2021
Formula
Binomial transform of (1, 1, 0, 2, 0, 2, 0, 2, 0, 2, ...).
For n>=1, a(n) = 2^n - n + 1 = A000325(n) + 1. - Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 17 2009. (Corrected by Franklin T. Adams-Watters, Jan 17 2009)
E.g.f.: U(0) - 1, where U(k) = 1 - x/(2^k + 2^k/(x - 1 - x^2*2^(k+1)/(x*2^(k+1) + (k+1)/U(k+1)))). - Sergei N. Gladkovskii, Dec 01 2012
From Colin Barker, Mar 14 2014: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) for n>3.
G.f.: (1-2*x+2*x^3) / ((1-x)^2*(1-2*x)). (End)
Comments