cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132045 Row sums of triangle A132044.

Original entry on oeis.org

1, 2, 3, 6, 13, 28, 59, 122, 249, 504, 1015, 2038, 4085, 8180, 16371, 32754, 65521, 131056, 262127, 524270, 1048557, 2097132, 4194283, 8388586, 16777193, 33554408, 67108839, 134217702, 268435429, 536870884, 1073741795, 2147483618, 4294967265, 8589934560
Offset: 0

Views

Author

Gary W. Adamson, Aug 08 2007

Keywords

Comments

Apart from initial terms, and with a change of offset, same as A095768. - Jon E. Schoenfield, Jun 15 2017

Examples

			a(4) = 13 = sum of row 4 terms of triangle A132044: (1 + 3 + 5 + 3 + 1).
a(4) = 13 = (1, 4, 6, 4, 1) dot (1, 1, 0, 2, 0) = (1 + 4 + 0 + 8 + 0).
		

Crossrefs

Programs

  • Magma
    [1] cat [2^n -n +1: n in [1..35]]; // G. C. Greubel, Feb 12 2021
  • Mathematica
    Table[2^n -(n-1) -Boole[n==0], {n, 0, 35}] (* G. C. Greubel, Feb 12 2021 *)
  • PARI
    Vec((1-2*x+2*x^3)/((1-x)^2*(1-2*x)) + O(x^100)) \\ Colin Barker, Mar 14 2014
    
  • Sage
    [1]+[2^n -n +1 for n in (1..35)] # G. C. Greubel, Feb 12 2021
    

Formula

Binomial transform of (1, 1, 0, 2, 0, 2, 0, 2, 0, 2, ...).
For n>=1, a(n) = 2^n - n + 1 = A000325(n) + 1. - Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 17 2009. (Corrected by Franklin T. Adams-Watters, Jan 17 2009)
E.g.f.: U(0) - 1, where U(k) = 1 - x/(2^k + 2^k/(x - 1 - x^2*2^(k+1)/(x*2^(k+1) + (k+1)/U(k+1)))). - Sergei N. Gladkovskii, Dec 01 2012
From Colin Barker, Mar 14 2014: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) for n>3.
G.f.: (1-2*x+2*x^3) / ((1-x)^2*(1-2*x)). (End)