cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132049 Numerator of 2*n*A000111(n-1)/A000111(n): approximations of Pi, using Euler (up/down) numbers.

Original entry on oeis.org

2, 4, 3, 16, 25, 192, 427, 4352, 12465, 158720, 555731, 8491008, 817115, 626311168, 2990414715, 60920233984, 329655706465, 7555152347136, 45692713833379, 232711080902656, 7777794952988025, 217865914337460224
Offset: 1

Views

Author

Wolfdieter Lang Sep 14 2007

Keywords

Comments

The denominators are given in A132050.
a(n)/n = 2, 2, 1, 4, 5, 32, 61, 544, ... are integers for n<=19. a(20)/20 = 58177770225664/5. - Paul Curtz, Mar 25 2013, Apr 04 2013

Examples

			Rationals r(n): [3, 16/5, 25/8, 192/61, 427/136, 4352/1385, 12465/3968, 158720/50521, ...].
		

References

  • J.-P. Delahaye, Pi - die Story (German translation), Birkhäuser, 1999 Basel, p. 31. French original: Le fascinant nombre Pi, Pour la Science, Paris, 1997.

Crossrefs

Cf. triangle A008281 (main diagonal give zig-zag numbers A000111), A223925.

Programs

  • Maple
    S := proc(n, k) option remember;
    if k=0 then `if`(n=0,1,0) else S(n,k-1)+S(n-1,n-k) fi end:
    R := n -> 2*n*S(n-1,n-1)/S(n,n);
    A132049 := n -> numer(R(n)); A132050 := n -> denom(R(n));
    seq(A132049(i),i=3..22); # Peter Luschny, Aug 04 2011
  • Mathematica
    e[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n+1)*(2^(n+1) - 1)*BernoulliB[n+1])/(n+1)]]; r[n_] := 2*n*(e[n-1]/e[n]); a[n_] := Numerator[r[n]]; Table[a[n], {n, 3, 22}] (* Jean-François Alcover, Mar 18 2013 *)
  • Python
    from itertools import islice, count, accumulate
    from fractions import Fraction
    def A132049_gen(): # generator of terms
        yield 2
        blist = (0,1)
        for n in count(2):
            yield Fraction(2*n*blist[-1],(blist:=tuple(accumulate(reversed(blist),initial=0)))[-1]).numerator
    A132049_list = list(islice(A132049_gen(),40)) # Chai Wah Wu, Jun 09-11 2022

Formula

a(n)=numerator(r(n)) with the rationals r(n)=2*n*e(n-1)/e(n), where e(n)=A000111(n) ("zig-zag" or "up-down" numbers), i.e., e(2*k)=A000364(k) (Euler numbers, secant numbers, "zig"-numbers) and e(2*k+1)=A000182(k+1),k>=0, (tangent numbers, "zag"-numbers). Rationals in lowest terms.

Extensions

Entries confirmed by N. J. A. Sloane, May 10 2012
More explicit definition from M. F. Hasler, Apr 03 2013
a(1) and a(2) prepended by Paul Curtz, Apr 04 2013