A132049 Numerator of 2*n*A000111(n-1)/A000111(n): approximations of Pi, using Euler (up/down) numbers.
2, 4, 3, 16, 25, 192, 427, 4352, 12465, 158720, 555731, 8491008, 817115, 626311168, 2990414715, 60920233984, 329655706465, 7555152347136, 45692713833379, 232711080902656, 7777794952988025, 217865914337460224
Offset: 1
Examples
Rationals r(n): [3, 16/5, 25/8, 192/61, 427/136, 4352/1385, 12465/3968, 158720/50521, ...].
References
- J.-P. Delahaye, Pi - die Story (German translation), Birkhäuser, 1999 Basel, p. 31. French original: Le fascinant nombre Pi, Pour la Science, Paris, 1997.
Links
- Leonhard Euler, On the sums of series of reciprocals, (Presented to the St. Petersburg Academy on December 5, 1735), arXiv:math/0506415 [math.HO], 2005-2008.
- Wolfdieter Lang, Rationals and some values
- Wikipedia, Bernoulli number
Programs
-
Maple
S := proc(n, k) option remember; if k=0 then `if`(n=0,1,0) else S(n,k-1)+S(n-1,n-k) fi end: R := n -> 2*n*S(n-1,n-1)/S(n,n); A132049 := n -> numer(R(n)); A132050 := n -> denom(R(n)); seq(A132049(i),i=3..22); # Peter Luschny, Aug 04 2011
-
Mathematica
e[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n+1)*(2^(n+1) - 1)*BernoulliB[n+1])/(n+1)]]; r[n_] := 2*n*(e[n-1]/e[n]); a[n_] := Numerator[r[n]]; Table[a[n], {n, 3, 22}] (* Jean-François Alcover, Mar 18 2013 *)
-
Python
from itertools import islice, count, accumulate from fractions import Fraction def A132049_gen(): # generator of terms yield 2 blist = (0,1) for n in count(2): yield Fraction(2*n*blist[-1],(blist:=tuple(accumulate(reversed(blist),initial=0)))[-1]).numerator A132049_list = list(islice(A132049_gen(),40)) # Chai Wah Wu, Jun 09-11 2022
Formula
Extensions
Entries confirmed by N. J. A. Sloane, May 10 2012
More explicit definition from M. F. Hasler, Apr 03 2013
a(1) and a(2) prepended by Paul Curtz, Apr 04 2013
Comments