A132062 Sheffer triangle (1,1-sqrt(1-2*x)). Extended Bessel triangle A001497.
1, 0, 1, 0, 1, 1, 0, 3, 3, 1, 0, 15, 15, 6, 1, 0, 105, 105, 45, 10, 1, 0, 945, 945, 420, 105, 15, 1, 0, 10395, 10395, 4725, 1260, 210, 21, 1, 0, 135135, 135135, 62370, 17325, 3150, 378, 28, 1, 0, 2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1, 0
Offset: 0
Examples
[1] [0, 1] [0, 1, 1] [0, 3, 3, 1] [0, 15, 15, 6, 1] [0, 105, 105, 45, 10, 1] [0, 945, 945, 420, 105, 15, 1] [0, 10395, 10395, 4725, 1260, 210, 21, 1] [0, 135135, 135135, 62370, 17325, 3150, 378, 28, 1]
References
- Toufik Mansour, Matthias Schork and Mark Shattuck, On the Stirling numbers associated with the meromorphic Weyl algebra, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771. - From N. J. A. Sloane, Sep 15 2012
- Steven Roman, The Umbral Calculus, Pure and Applied Mathematics, 111, Academic Press, 1984. (p. 78) [Emanuele Munarini, Oct 10 2017]
Links
- Leonard Carlitz, A Note on the Bessel Polynomials, Duke Math. J. 24 (2) (1957), 151-162. [_Emanuele Munarini_, Oct 10 2017]
- H. Han and S. Seo, Combinatorial proofs of inverse relations and log-concavity for Bessel numbers, Eur. J. Combinat. 29 (7) (2008) 1544-1554. [From _R. J. Mathar_, Mar 20 2009]
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Wolfdieter Lang, First 10 rows.
- Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See p. 18.
Crossrefs
Programs
-
Maple
# The function BellMatrix is defined in A264428. BellMatrix(n -> doublefactorial(2*n-1), 9); # Peter Luschny, Jan 27 2016 # Alternative: egf := exp(y*(1 - sqrt(1 - 2*x))): serx := series(egf, x, 12): coefx := n -> n!*coeff(serx, x, n): row := n -> seq(coeff(coefx(n), y, k), k = 0..n): for n from 0 to 8 do row(n) od; # Peter Luschny, Apr 25 2024
-
Mathematica
Table[If[k <= n, Binomial[2n-2k,n-k] Binomial[2n-k-1,k-1] (n-k)!/2^(n-k), 0], {n, 0, 6}, {k, 0, n}] // Flatten (* Emanuele Munarini, Oct 10 2017 *) BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 10; M = BellMatrix[(2#-1)!!&, rows]; Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
Sage
# uses[bell_transform from A264428] def A132062_row(n): a = sloane.A001147 dblfact = a.list(n) return bell_transform(n, dblfact) [A132062_row(n) for n in (0..9)] # Peter Luschny, Dec 20 2015
Formula
a(n,m)=0 if n
E.g.f. m-th column ((x*f2p(1;x))^m)/m!, m>=0. with f2p(1;x):=1-sqrt(1-2*x)= x*c(x/2) with the o.g.f.of A000108 (Catalan).
From Emanuele Munarini, Oct 10 2017: (Start)
a(n,k) = binomial(2*n-2*k,n-k)*binomial(2*n-k-1,k-1)*(n-k)!/2^(n-k).
The row polynomials p_n(x) (studied by Carlitz) satisfy the recurrence: p_{n+2}(x) - (2*n+1)*p_{n+1}(x) - x^2*p_n(x) = 0. (End)
T(n, k) = n! [y^k] [x^n] exp(y*(1 - sqrt(1 - 2*x))). - Peter Luschny, Apr 25 2024
Comments