A132076 a(1)=1, a(2)=2. a(n), for every positive integer n, is such that Product_{k=1..n} (Sum_{j=1..k} a(j)) = Sum_{k=1..n} Product_{j=1..k} a(j).
1, 2, -6, -12, -240, -65280, -4294901760, -18446744069414584320, -340282366920938463444927863358058659840, -115792089237316195423570985008687907852929702298719625575994209400481361428480
Offset: 1
Examples
For n = 4, we have a(1) * (a(1)+a(2)) * (a(1)+a(2)+a(3)) * (a(1)+a(2)+a(3)+a(4)) = a(1) + a(1)*a(2) + a(1)*a(2)*a(3) + a(1)*a(2)*a(3)*a(4) = 1 * (1+2) * (1+2-6) * (1+2-6-12) = 1 + 1*2 + 1*2*(-6) + 1*2*(-6)*(-12) = 135.
Links
- Rick L. Shepherd, Table of n, a(n) for n = 1..13
Programs
-
PARI
a(n) = if(n<1, ,if(n<3, n, if(n==3, -6, -2^(2^(n-3))*(2^(2^(n-3))-1)))) \\ Rick L. Shepherd, Aug 10 2014
Formula
For n >= 4, a(n) = -2^(2^(n-3)) * (2^(2^(n-3)) - 1).
Extensions
More terms from Max Alekseyev, Apr 29 2010
Comments