A132100 Number of distinct Tsuro tiles which are square and have n points per side.
1, 2, 35, 2688, 508277, 163715822, 79059439095, 53364540054860, 47974697008198313, 55410773910104281242, 79957746695043660483467, 140965507420235075126987480, 298142048193613276717321211805, 745056978435827991570581878537478
Offset: 0
Keywords
Links
- Calliope Games, Tsuro
- Mike Garrity, Path Tile Games, Jan 07 2012.
Programs
-
Maple
# A(n,m) gives the number of n-sided tiles with m points per side (cf. comments) # B(n,m) enumerates these tiles, also allowing reflections with(numtheory): a:=(p,r)->piecewise(p mod 2 = 1,p^(r/2)*doublefactorial(r-1), sum(p^j*binomial(r, 2*j)*doublefactorial(2*j - 1), j = 0 .. floor(r/2))); A := (n,m)->piecewise(n*m mod 2=1,0,add(phi(p)*a(p,m*n/p),p in divisors(n))/n); B := (n,m)->A(n,m)/2+piecewise(n*m mod 2=0,piecewise(m mod 2=0,a(2,m*n/2)*2, a(2,m*n/2)+a(2,m*n/2-1))/4,0); A132100 := m -> A(4,m);[seq(A132100(m),m=1..15)]; # Laurent Tournier, Jul 09 2014
Formula
From Laurent Tournier, Jul 09 2014: (Start)
a(m) = ((4m-1)!! + sum_{j=0..m} 2^j binomial(2m,2j) (2j-1)!! + 2 sum_{0<=2j<=m} 4^j binomial(m, 2j) (2j-1)!!)/4
More generally, if A(n,m) is the number of n-sided tiles with m points per side (with nm even),
A(n,m) = 1/n sum_{n=pq} phi(p)*alpha(p,mq), phi = Euler's totient function,
alpha(p,r) = sum_{0 <= 2j <= r} p^j binomial(r,2j) (2j-1)!! if p even,
= p^(r/2) (r-1)!! if p odd.
If B(n,m) is the number of n-sided tiles with m points per side (with nm even), allowing reflections,
B(n,m) = (A(n,m) + alpha(2,mn/2))/2 if m even,
= (A(n,m) + alpha(2,mn/2)/2 + alpha(2,mn/2-1)/2)/2 if m odd.
(End)
Extensions
More terms from Laurent Tournier, Jul 09 2014
Comments