A132121 Triangle read by rows: T(n,k)=n*(n+1)*((3*k+2)*n+1)/6, 0<=k<=n.
0, 1, 2, 5, 11, 17, 14, 32, 50, 68, 30, 70, 110, 150, 190, 55, 130, 205, 280, 355, 430, 91, 217, 343, 469, 595, 721, 847, 140, 336, 532, 728, 924, 1120, 1316, 1512, 204, 492, 780, 1068, 1356, 1644, 1932, 2220, 2508, 285, 690, 1095, 1500, 1905, 2310, 2715, 3120, 3525, 3930
Offset: 0
Examples
0; 1, 2; 5, 11, 17; 14, 32, 50, 68; 30, 70, 110, 150, 190; 55, 130, 205, 280, 355, 430; 91, 217, 343, 469, 595, 721, 847; 140, 336, 532, 728, 924, 1120, 1316, 1512; 204, 492, 780, 1068, 1356, 1644, 1932, 2220, 2508;
Programs
-
Maple
A132121 := proc(n,k) n*(n+1)*((3*k+2)*n+1)/6 ; end proc: seq(seq(A132121(n,k),k=0..n),n=0..13) ; # R. J. Mathar, Feb 19 2020
-
Mathematica
Table[n(n+1)((3k+2)n+1)/6,{n,0,9},{k,0,n}]//Flatten (* James C. McMahon, Mar 04 2025 *)
Formula
G.f.: Sum_{n>=0} Sum_{k>=0} T(n,k)*x^n*y^k = x*(x*y+1+x)/((1-x)^4*(1-y)^2). - R. J. Mathar, Jul 28 2016. Note that this generates a full array, not just the triangular subspace.
Extensions
a(53)-a(54) from James C. McMahon, Mar 04 2025
Comments