cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A115792 a(n) = ceiling(g(A000073(n))) with g(k) = (k-1)^2/(4k).

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 6, 11, 20, 37, 69, 126, 232, 426, 784, 1442, 2652, 4878, 8973, 16503, 30354, 55829, 102686, 188869, 347384, 638939, 1175193, 2161516, 3975648, 7312356, 13449520, 24737524, 45499400, 83686444, 153923369, 283109213, 520719026, 957751607
Offset: 2

Views

Author

Roger L. Bagula, Mar 13 2006

Keywords

Comments

Old name: A dihedral D1 elliptical transform on A000073.
A D1 elliptical invariant transform leaves the ratio unchanged.

Crossrefs

Programs

  • Mathematica
    g[x_] = (x - 1)^2/(-4*x) M = {{0, 1, 0}, {0, 0, 1}, {1, 1, 1}} w[0] = {0, 1, 1}; w[n_] := w[n] = M.w[n - 1] a0 = Table[ -Floor[g[w[n][[1]]]], {n, 1, 25}] b0 = Table[N[a0[[n + 1]]/a0[[n]]], {n, 2, 24}]

Formula

Conjectures from Chai Wah Wu, Dec 21 2023: (Start)
a(n) = a(n-2) + 2*a(n-3) + 2*a(n-4) + 2*a(n-5) + 2*a(n-6) + 2*a(n-7) + 3*a(n-8) + 2*a(n-9) + a(n-10) for n > 11.
G.f.: x^4*(-x^2 - x - 1)/((x + 1)*(x^2 + 1)*(x^4 + 1)*(x^3 + x^2 + x - 1)). (End)
For n >= 5, a(n) = a(n-1) + a(n-2) + a(n-3) - A132151(n+2). - Peter Munn, Jul 17 2025

Extensions

Edited by Peter Munn, Jul 17 2025
Showing 1-1 of 1 results.