A132167
Row sums of triangle A132166 (s1(7)).
Original entry on oeis.org
1, 22, 379, 5713, 80032, 1080325, 14354557, 189853438, 2511177679, 33258000301, 440953665088, 5849978617585, 77627638378537, 1030136054227366, 13669717178313811, 181387989640645081, 2406840013228174816
Offset: 1
A132168
Alternating row sums of triangle A132166 (s1(7)).
Original entry on oeis.org
1, 20, 295, 3485, 33496, 247799, 1010905, -7422100, -238118825, -3513857515, -38530770320, -329008652665, -1926925302575, -594574697500, 188633380315975, 3451130126965325, 42502627523897800, 406764806549554775, 2912899847916711625
Offset: 1
A134141
Generalized unsigned Stirling1 triangle, S1p(7).
Original entry on oeis.org
1, 7, 1, 56, 21, 1, 504, 371, 42, 1, 5040, 6440, 1295, 70, 1, 55440, 114520, 36225, 3325, 105, 1, 665280, 2116800, 983920, 135975, 7105, 147, 1, 8648640, 40884480, 26714800, 5199145, 398860, 13426, 196, 1, 121080960, 826338240, 735469280
Offset: 1
{1}; {7,1}; {56,21,1}; {504,371,42,1}; ... E.g. Row polynomial E(3,x)=56*x+21*x^2+x^3.
a(4,2)= 371 = 4*(7*8)+3*(7*7) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*7*8)=56 colored versions, e.g., ((1c1),(2c1,3c7,4c5)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 7 colors, c1..c7, can be chosen and the vertex labeled 4 with j=2 can come in 8 colors, e.g., c1..c8. Therefore there are 4*((1)*(1*7*8))=224 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*7)*(1*7))=147 such forests, e.g. ((1c1,3c4)(2c1,4c7)) or ((1c1,3c6)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 05 2007
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> (n+6)!/6!, 9); # Peter Luschny, Jan 27 2016
-
a[n_, m_] /; n >= m >= 1 := a[n, m] = (6*m + n - 1)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 39]] (* _Jean-François Alcover, Jun 01 2011, after formula *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[(# + 6)!/6! &, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
# uses[bell_matrix from A264428]
# Adds a column 1,0,0,0, ... at the left side of the triangle.
bell_matrix(lambda n: factorial(n+6)/factorial(6), 10) # Peter Luschny, Jan 18 2016
Showing 1-3 of 3 results.
Comments