cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A132164 Row sums of triangle A134141 (S1p(7)).

Original entry on oeis.org

1, 1, 8, 78, 918, 12846, 209616, 3909228, 81859548, 1897344828, 48135826656, 1325008302696, 39292978029768, 1247949491330088, 42236558731574208, 1516738194700667856, 57573649342673292816, 2302425590703685075728, 96720470167595138898048
Offset: 0

Views

Author

Wolfdieter Lang, Oct 12 2007

Keywords

Crossrefs

Cf. A132165 (alternating row sum of A134141), A049428.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1)*(j+5)!/6!*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 01 2017
  • Mathematica
    a[n_]:=a[n]=If[n==0, 1, Sum[Binomial[n - 1, j - 1] (j + 5)!/6! a[n - j], {j, n}]]; Table[a[n], {n, 0, 25}] (* Indranil Ghosh, Aug 02 2017, after Maple code *)

Formula

a(n)= sum(A134141(n,m),m=1..n),n>=1.
E.g.f.: exp((1-(1-x)^6)/(6*(1-x)^6)). Cf. e.g.f. first column of A134141.
From Seiichi Manyama, Jan 18 2025: (Start)
a(n) = Sum_{k=0..n} |Stirling1(n,k)| * A005012(k).
a(n) = (1/exp(1/6)) * (-1)^n * n! * Sum_{k>=0} binomial(-6*k,n)/(6^k * k!). (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 01 2017

A132165 Alternating row sums of triangle A134141 (S1p(7)).

Original entry on oeis.org

1, 6, 36, 174, -174, -26076, -596616, -10334556, -143486244, -1157102136, 19891298736, 1443409042536, 52915941558936, 1542313273333104, 37123741709607456, 635436136388469744, -1073509544497887216, -801332217409556182176, -51221481393025808800704
Offset: 1

Views

Author

Wolfdieter Lang Oct 12 2007

Keywords

Crossrefs

Cf. A132164 (row sum of A134141).

Formula

a(n)= sum(A134141(n,m)*(-1)^(m-1),m=1..n),n>=1.
E.g.f.: 1 - exp(-(1-(1-x)^6)/(6*(1-x)^6)). Cf. e.g.f. first column of A134141.

A132166 A convolution triangle of numbers obtained from A036224.

Original entry on oeis.org

1, 21, 1, 336, 42, 1, 4536, 1113, 63, 1, 54432, 23184, 2331, 84, 1, 598752, 412272, 65205, 3990, 105, 1, 6158592, 6531840, 1518048, 139860, 6090, 126, 1, 60046272, 94618368, 30912840, 4010769, 256410, 8631, 147, 1, 560431872, 1274921856
Offset: 1

Views

Author

Wolfdieter Lang, Oct 12 2007

Keywords

Comments

Signed version: (-1)^(n-m)*a(n, m) := s1(7; n,m).
a(n,m) := s1p(7; n,m), a member of a sequence of unsigned triangles including s1p(2; n,m)= A007318(n-1,m-1) (Pascal's triangle), A030523=s1p(3), A036068=s1p(4), A030526=s1p(5) and A030527=s1p(6).

Examples

			{1};{21,1};{336,42,1};{4536,1113,63,1};...; Row polynomial s(3,x)=336*x+42*x^2+x^3.
		

Crossrefs

Related triangle A134141 (S1p(7)).
Cf. A036224(n-1), n>=1 (first column). A132167 (row sums). A132168 (alternating row sums).

Formula

a(n, m) = 6*(6*m+n-1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f. for m-th column: ((1-(1-6*x)^6)/(36*(1-6*x)^6))^m.
Showing 1-3 of 3 results.