A132183
Number of "regular" Boolean functions of n variables.
Original entry on oeis.org
2, 3, 5, 10, 27, 119, 1173, 44315, 16175190, 284432730176
Offset: 0
For example, the 10 Boolean functions for n=3 have the truth tables
00000000
00000001
00000011
00000111
00001111
00010111
00011111
00111111
01111111
11111111
(things don't get very interesting until n=4 or 5).
- Stefan Bolus, A QOBDD-based Approach to Simple Games, Dissertation, Doktor der Ingenieurwissenschaften der Technischen Fakultaet der Christian-Albrechts-Universitaet zu Kiel, 2012. - From _N. J. A. Sloane_, Dec 22 2012
- Bjørn Kjos-Hanssen, Lei Liu, The number of languages with maximum state complexity, arXiv:1902.00815 [cs.FL], 2019.
- I. Krohn and P. Sudhölter, Directed and weighted majority games, Mathematical Methods of Operation Research, 42, 2 (1995), 189-216. See Table 1, row 1, p. 213; also on ResearchGate.
A132185
a(n) is the largest number beginning with 1 such that, for any m, the number formed from the first m digits of a(n) is congruent to n mod m.
Original entry on oeis.org
144408645048225636603816, 1725676121534561296189, 188276429246387492222, 19838179232721317143537, 12764828245698443284086, 176903816597810123057, 18626438463030625206604, 19352559475935751347112, 16128296082816884008108
Offset: 0
Philippe LALLOUET (philip.lallouet(AT)orange.fr), Nov 04 2007
a(3) = 19838179232721317143537 because 19 == 3 mod 2, 198 == 3 mod 3, 1983 == 3 mod 4,..., 19838179232721317143537 == 3 mod 23; but no additional digit makes a 3 mod 24 number.
A134595
a(n) is the smallest number such that, for any m, the number formed from the first m digits of a(n) is congruent to n mod m; but no digit can be appended to maintain the condition.
Original entry on oeis.org
1080548820, 1121114531, 1010249842, 1115859543, 1064928464, 1105018975, 1026605496, 1303211957, 1012880068, 1113933789, 1002529000, 1139156391, 1080784472, 1121350183, 1010485494, 1111055105, 1000603246, 1101719337
Offset: 0
Philippe LALLOUET (philip.lallouet(AT)orange.fr), Nov 04 2007
a(1) = 1121114531 because 11 == 1 mod 2, 112 == 1 mod 3, 1211 == 1 mod 4, ..., 1121114531 == 1 mod 10 but there is no digit such that 1121114531d == 1 mod 11. (10 is not a digit.)
Showing 1-3 of 3 results.
Comments