A132200 Numbers in (4,4)-Pascal triangle .
1, 4, 4, 4, 8, 4, 4, 12, 12, 4, 4, 16, 24, 16, 4, 4, 20, 40, 40, 20, 4, 4, 24, 60, 80, 60, 24, 4, 4, 28, 84, 140, 140, 84, 28, 4, 4, 32, 112, 224, 280, 224, 112, 32, 4, 4, 36, 144, 336, 504, 504, 336, 144, 36, 4, 4, 40, 180, 480, 840, 1008, 840, 480, 180, 40, 4
Offset: 0
Examples
Triangle begins: 1; 4, 4; 4, 8, 4; 4, 12, 12, 4; 4, 16, 24, 16, 4; 4, 20, 40, 40, 20, 4;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
[1] cat [4*Binomial(n,k): k in [0..n], n in [1..12]]; // G. C. Greubel, May 03 2021
-
Mathematica
Table[4*Binomial[n,k] -3*Boole[n==0], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 03 2021 *)
-
Sage
def A132200(n,k): return 4*binomial(n,k) - 3*bool(n==0) flatten([[A132200(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 03 2021
Formula
T(n,k) = 4*binomial(n,k), n>0 ; T(0,0)=1.
Sum_{k=0..n} T(n,k) = 2^(n+2) - 3*[n=0]. - G. C. Greubel, May 03 2021
Comments