A132201 Pierce expansion of Catalan's Constant A006752.
1, 11, 13, 59, 582, 12285, 127893, 654577, 1896651, 2083263, 3828867, 6195679, 22339606, 43877386, 209882043, 269091773, 1585394894, 2614512078, 3726537414, 4487682121, 6296491774, 8648456991, 23933983277, 174313954158, 367633382556
Offset: 1
Keywords
Examples
0.9159... = 1/1 - 1/11 + 1/(11*13) - 1/(11*13*59) + 1/(11*13*59*582) - ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- T. A. Pierce, On an algorithm and its use in approximating roots of algebraic equations, Am. Math. Monthly 36 (10) (1929) 523.
- Eric Weisstein's World of Mathematics, Pierce Expansion.
Crossrefs
Cf. A006752.
Programs
-
Maple
Digits := 300: Pierce := proc(x) local resid,a,i,an ; resid := x ; a := [] ; for i from 1 do an := floor(1./resid) ; a := [op(a),an] ; resid := evalf(1.-an*resid) ; if ilog10( mul(i,i=a)) > 0.7*Digits then break ; fi ; od: RETURN(a) ; end: Pierce(Catalan);
-
Mathematica
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[Catalan , 7!], 20] (* G. C. Greubel, Nov 15 2016 *)
-
PARI
r=1/Catalan; for(n=1, 10, print(floor(r), ", "); r=r/(r-floor(r))) \\ G. C. Greubel, Nov 15 2016