cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A134772 Let f(m, n) = 2^(-m) * Sum_{j=0..n} (-1)^j*m!*n!*(2*m-2*j)!/(j!*(m-j)! *(n-j)!*6^(n-j)) then a(n) = f(2n,n).

Original entry on oeis.org

1, 0, 28, 14400, 27165600, 134289792000, 1445549490000000, 29865588836219136000, 1081114481157129619200000, 64007711015400701105356800000, 5873237165016878140678626432000000, 799901135455942846519287494400000000000, 156064894765355001368149078831725782016000000
Offset: 0

Views

Author

N. J. A. Sloane, Oct 18 2009

Keywords

Crossrefs

A variant of A132202.
Bisections: A137942, A144649.

Programs

  • Magma
    B:=Binomial;
    A134772:= func< n | Factorial(4*n)/(24)^n *(&+[B(n,j)*B(2*n,j)*(-6)^j/(Factorial(j)*B(2*j,j)*B(4*n,2*j)) : j in [0..n]]) >;
    [A134772(n): n in [0..30]]; // G. C. Greubel, Oct 12 2023
    
  • Mathematica
    Table[((4*n)!/(24)^n)*Hypergeometric1F1[-n, 1/2-2*n, -3/2], {n,0,30}] (* G. C. Greubel, Oct 12 2023 *)
  • SageMath
    def A134772(n): return (factorial(4*n)/(24)^n)* simplify(hypergeometric([-n], [1/2-2*n], -3/2))
    [A134772(n) for n in range(31)] # G. C. Greubel, Oct 12 2023

Formula

a(n) = 4^(-n) * Sum_{j=0..n} (-1)^j*(2*n)!*n!*(4*n-2*j)!/(j!*(2*n-j)! *(n-j)!*6^(n-j)).
From G. C. Greubel, Oct 12 2023: (Start)
a(n) = ((4*n)!/(24)^n) * Sum_{j=0..n} b(n,j)*b(2*n,j)(-6)^j/(b(2*j,j) * b(4*n,2*j)), where b(x,y) = binomial(x,y).
a(n) = ((4*n)!/(24)^n) * Hypergeometric1F1([-n], [1/2 -2*n], -3/2).
Sum_{n>=0} a(n)*x^n/(n!*(2*n)!) = 1/sqrt(1+x) * Hypergeometric2F0([1/4, 3/4]; --; 8*x/(3*(1+x)^2)). (End)
a(n) ~ sqrt(Pi) * 2^(5*n + 3/2) * n^(4*n + 1/2) / (3^n * exp(4*n + 3/4)). - Vaclav Kotesovec, Oct 21 2023

A134648 Number of 2n X n (0,1)-matrices with row sums 2 and column sums 4.

Original entry on oeis.org

0, 1, 90, 44730, 56586600, 154700988750, 807998767676100, 7373018003758407000, 109829050417159537464000, 2532230252503738514963235000, 86574740102712303011539719750000, 4237239732072431006302896746240010000
Offset: 1

Views

Author

Shanzhen Gao, Nov 05 2007

Keywords

Comments

t(m,n) in the formula gives the number of (0,1)-matrices of size m*n with row sum 4 and column sum 2. a(n) in the formula gives the number of (0,1)-matrices of size n*(2n) with row sum 4 and column sum 2. - Shanzhen Gao, Feb 16 2010

Examples

			Number of  4 X 2 (0,1)-matrices:       1;
Number of  6 X 3 (0,1)-matrices:      90;
Number of  8 X 4 (0,1)-matrices:   44730;
Number of 10 X 5 (0,1)-matrices: 5658660.
		

References

  • Gao, Shanzhen, and Matheis, Kenneth, Closed formulas and integer sequences arising from the enumeration of (0,1)-matrices with row sum two and some constant column sums. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 45-53.

Crossrefs

Programs

  • Magma
    B:=Binomial; F:=Factorial;
    f:= func< m,n,k,j | B(m, k)*B(m-k, j)*B(2*m+2*k-2*j, m+k-j)*F(m+k-j) >;
    t:= func< m,n | ((-1)^m*F(n)/8^m)*(&+[(&+[f(m,n,k,j)*(-1)^(j+k)/(12)^k: k in [0..m-j]]): j in [0..m]]) >;
    A134648:= func< n | F(2*n)*t(n,n)/F(n) >;
    [A134648(n): n in [1..30]]; // G. C. Greubel, Oct 13 2023
    
  • Mathematica
    t[m_, n_]:= t[m, n]= ((-1)^m*n!/8^m)*Sum[Binomial[m,k]*Binomial[m-k,j]*Binomial[2*m+2*k-2*j,m+k-j]*(m+k-j)!*(-1)^(j+k)/(12)^k, {j,0, m}, {k,0,m-j}];
    A134648[n_]:= (2*n)!*t[n,n]/n!;
    Table[A134648[n], {n,30}] (* G. C. Greubel, Oct 13 2023 *)
  • SageMath
    b=binomial; F=factorial;
    def f(m,n,k,j): return b(m, k)*b(m-k, j)*b(2*m+2*k-2*j, m+k-j)*F(m+k-j)
    def t(m,n): return ((-1)^m*F(n)/8^m)*sum(sum(f(m,n,k,j)*(-1)^(j+k)/(12)^k for k in range(m-j+1)) for j in range(m+1))
    def A134648(n): return F(2*n)*t(n,n)/F(n)
    [A134648(n) for n in range(1,31)] # G. C. Greubel, Oct 13 2023

Formula

a(n) = (2*n)!*t(n,n)/n!, where t(m, n) = (1/24^m)*Sum_{j=0..m} Sum_{k=0..m-j} ( (-1)^(m-j-k)*3^j*6^(m-j-k)*m!*n!*(4*k+2*(m-j-k))! )/( j!*k!*(m-j-k)!*(2*k+(m-j-k))!*2^(2*k+(m-j-k)) ).
a(n) = (1/24^n)*Sum_{j=0..n} Sum_{k=0..n-j} ((-1)^(n-j-k)*3^j*6^(n-j-k)*n!(2n)!(2n-2j+2k)!/(j!k!(n-j-k)!(n-j+k)!*2^(n-j+k))). - Shanzhen Gao, Feb 16 2010
a(n) ~ sqrt(Pi) * 2^(3*n + 3/2) * n^(4*n + 1/2) / (3^n * exp(4*n + 3/2)). - Vaclav Kotesovec, Oct 21 2023

Extensions

a(7) onwards from R. H. Hardin, Oct 18 2009

A152296 Let f(M,N)=2^(-M)*sum_{i=0..N} {(-1)^{i}M!N!(2M-2i)!}/{i!(M-i)!(N-i)!6^{N-i}}; then a(n) = f(3n,n).

Original entry on oeis.org

1, 6, 113400, 32901422400, 67651716132000000, 608762379843757339200000, 17903325789347617610786995200000, 1415199921956087613201896962521600000000, 261375521452474271183649591888039276441600000000, 101519644940256627137917269623207295713536128000000000000, 76392226231236455854222646891536244623780022885776896000000000000
Offset: 0

Views

Author

N. J. A. Sloane, Oct 18 2009

Keywords

Crossrefs

A variant of A132202. Cf. A134648, A134772, A152296.

Programs

  • Mathematica
    Table[2^(-3*n) * Sum[(-1)^i * (3*n)! * n! * (6*n-2*i)! / (i! * (3*n-i)! * (n-i)! * 6^(n-i)), {i,0,n}], {n,0,20}] (* Vaclav Kotesovec, Oct 21 2023 *)
    Table[(6*n)! * Hypergeometric1F1[-n, 1/2 - 3*n, -3/2] / (2^(4*n) * 3^n), {n, 0, 20}] (* Vaclav Kotesovec, Oct 21 2023 *)

Formula

a(n) ~ sqrt(Pi) * 2^(2*n+1) * 3^(5*n + 1/2) * n^(6*n + 1/2) / exp(6*n + 1/2). - Vaclav Kotesovec, Oct 21 2023
Showing 1-3 of 3 results.