A132206 Total number of Latin 5-dimensional hypercubes (Latin polyhedra) of order n.
1, 2, 96, 6268637952000, 2010196727432478720
Offset: 1
Examples
4*(4-1)!^5*L5(4) = 6268637952000 where L5(4) = 201538000
References
- T. Ito, Method, equipment, program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (written in Japanese).
- B. D. McKay and I. M. Wanless, A census of small latin hypercubes, SIAM J. Discrete Math. 22, (2008) 719-736.
- Kenji Ohkuma, Atsuhiro Yamagishi and Toru Ito, Cryptography Research Group Technical report, IT Security Center, Information-Technology Promotion Agency, JAPAN.
Formula
Equals n*(n-1)!^5*L5(n), where L5(n) is number of reduced Latin 5-dimensional hypercubes (Latin polyhedra) of order n (cf. A132205).
Extensions
a(5) from Ian Wanless, May 01 2008
Edited by N. J. A. Sloane, Dec 05 2009 at the suggestion of Vladeta Jovovic
Comments