cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A100540 Total number of Latin 4-dimensional hypercubes (Latin polyhedra) of order n.

Original entry on oeis.org

1, 2, 48, 36972288, 52260618977280
Offset: 1

Views

Author

Toru Ito (t_ito(AT)mue.biglobe.ne.jp), Nov 28 2004

Keywords

References

  • T. Ito, Method, equipment,program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (in Japanese).

Crossrefs

A row of the array in A249026.

Extensions

a(5) from Ian Wanless, May 01 2008
Edited by N. J. A. Sloane, Dec 05 2009 at the suggestion of Vladeta Jovovic

A249026 Array read by antidiagonals upwards: T(d,n) = number of d-dimensional permutations of n letters (d >= 0, n >= 1).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 6, 4, 1, 2, 12, 24, 5, 1, 2, 24, 576, 120, 6, 1, 2, 48, 55296, 161280, 720, 7, 1, 2, 96, 36972288, 2781803520, 812851200, 5040, 8, 1, 2, 192, 6268637952000, 52260618977280, 994393803303936000, 61479419904000, 40320, 9
Offset: 0

Views

Author

N. J. A. Sloane, Oct 23 2014

Keywords

Comments

By definition, this is the number of nXnXnX...Xn = n^(d+1) arrays of 0's and 1's with exactly one 1 in each row, column, ..., line, ... .
An ordinary permutation is the case d = 1 (ordinary matrices with a single 1 in each row and column).
Rows d=2,3,... correspond to Latin squares, cubes, etc.

Examples

			The array begins:
d\n: 1, 2, 3,  4,  5,   6,   7,    8,     9,      10,      11,
--------------------------------------------------------------
0:   1, 2, 3,  4,  5,   6,   7,    8,     9,      10,      11,
1:   1, 2, 6,  24, 120, 720, 5040, 40320, 362880, 3628800, 39916800,  ...
2:   1, 2, 12, 576, 161280, 812851200, 61479419904000, 108776032459082956800,...
3:   1, 2, 24, 55296, 2781803520, 994393803303936000, ...
4:   1, 2, 48, 36972288, 52260618977280, ...
5:   1, 2, 96, 6268637952000, 2010196727432478720, ...
6:   1, 2, 192, ...
7:   1, 2, 384, ...
8:   1, 2, 768, ...
...
		

Crossrefs

Column 4 = A249028.
See A249027 for another version.

A132205 Number of reduced Latin 5-dimensional hypercubes (Latin polyhedra) of order n.

Original entry on oeis.org

1, 1, 1, 201538000, 50490811256
Offset: 1

Views

Author

Toru Ito (to-itou(AT)ipa.go.jp), Nov 06 2007

Keywords

Comments

Latin 5-dimensional hypercubes (Latin polyhedra) are a generalization of Latin cube and Latin square. a(4) computed on Dec 01 2002.

References

  • T. Ito, Method, equipment, program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (written in Japanese).
  • Kenji Ohkuma, Atsuhiro Yamagishi and Toru Ito, Cryptography Research Group Technical report, IT Security Center, Information-Technology Promotion Agency, JAPAN.

Crossrefs

Extensions

a(5) from Ian Wanless, May 01 2008
Edited by N. J. A. Sloane, Dec 05 2009 at the suggestion of Vladeta Jovovic

A211215 Total number of Latin n-dimensional hypercubes of order 4; labeled n-ary quasigroups of order 4.

Original entry on oeis.org

4, 24, 576, 55296, 36972288, 6268637952000, 80686060158523011084288, 4465185218736554544676917926460256725000192, 4558271384916189349044295395852008182480786230841798008741684281906576963885826048
Offset: 0

Views

Author

Denis S. Krotov and Vladimir N. Potapov, Apr 06 2012

Keywords

Comments

The values are calculated recursively, based on the characterization by 2009. The number a(5) was found before (2001 and, independently, later works) by exhaustive computer-aided classification of the objects.

References

  • T. Ito, Creation Method of Table, Creation Apparatus, Creation Program and Program Storage Medium, U.S. Patent application 20040243621, Dec 02 2004.

Crossrefs

Programs

Formula

a(n) = 4*6^n * A211214(n).

A249027 Array read by antidiagonals upwards: T(d,n) = number of d-dimensional permutations of n letters (d >= 1, n >= 1).

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 12, 24, 1, 2, 24, 576, 120, 1, 2, 48, 55296, 161280, 720, 1, 2, 96, 36972288, 2781803520, 812851200, 5040, 1, 2, 192, 6268637952000, 52260618977280, 994393803303936000, 61479419904000, 40320
Offset: 1

Views

Author

N. J. A. Sloane, Oct 23 2014

Keywords

Comments

By definition, this is the number of nXnXnX...Xn = n^(d+1) arrays of 0's and 1's with exactly one 1 in each row, column, ..., line, ... .
An ordinary permutation is the case d = 1 (ordinary matrices with a single 1 in each row and column).
Rows d=2,3,... correspond to Latin squares, cubes, etc.

Examples

			The array begins:
d\n: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
-----------------------------------------------------------
1: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, ...
2: 1, 2, 12, 576, 161280, 812851200, 61479419904000, 108776032459082956800,...
3: 1, 2, 24, 55296, 2781803520, 994393803303936000, ...
4: 1, 2, 48, 36972288, 52260618977280, ...
5: 1, 2, 96, 6268637952000, 2010196727432478720, ...
6: 1, 2, 192, ...
7: 1, 2, 384, ...
8: 1, 2, 768, ...
...
		

Crossrefs

Column 4 = A249028.
See A249026 for another version.
Showing 1-5 of 5 results.