A132218 Expansion of psi(-x^3) / phi(-x) in powers of x where psi(), phi() are Ramanujan theta functions.
1, 2, 4, 7, 12, 20, 32, 50, 76, 113, 166, 240, 342, 482, 672, 928, 1270, 1724, 2323, 3108, 4132, 5460, 7174, 9376, 12192, 15780, 20332, 26086, 33334, 42432, 53817, 68018, 85680, 107584, 134674, 168092, 209210, 259680, 321484, 396996, 489056, 601052, 737024
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 20*x^5 + 32*x^6 + 50*x^7 + 76*x^8 + ... G.f. = q^3 + 2*q^11 + 4*q^19 + 7*q^27 + 12*q^35 + 20*q^43 + 32*q^51 + 50*q^59 + ...
Links
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
nmax=60; CoefficientList[Series[Product[(1+x^k) * (1-x^(12*k))/( (1-x^k) * (1+x^(3*k))),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *) a[ n_] := SeriesCoefficient[ 2^(-1/2) x^(-3/8) EllipticTheta[ 2, Pi/4, x^(3/2)] / EllipticTheta[ 4, 0, x], {x, 0, n}]; (* Michael Somos, Nov 01 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A)^2 * eta(x^6 + A)), n))};
Formula
Expansion of q^(-3/8) * eta(q^2) * eta(q^3) * eta(q^12) / (eta(q)^2 * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 0, ...].
G.f.: Product_{k>0} (1 + x^k) * (1 + x^k + x^(2*k)) * (1 + x^(6*k)).
a(n) ~ 5^(1/4) * exp(sqrt(5*n/6)*Pi) / (2^(11/4) * 3^(3/4) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015
Comments