cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132218 Expansion of psi(-x^3) / phi(-x) in powers of x where psi(), phi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 4, 7, 12, 20, 32, 50, 76, 113, 166, 240, 342, 482, 672, 928, 1270, 1724, 2323, 3108, 4132, 5460, 7174, 9376, 12192, 15780, 20332, 26086, 33334, 42432, 53817, 68018, 85680, 107584, 134674, 168092, 209210, 259680, 321484, 396996, 489056, 601052, 737024
Offset: 0

Views

Author

Michael Somos, Aug 13 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 20*x^5 + 32*x^6 + 50*x^7 + 76*x^8 + ...
G.f. = q^3 + 2*q^11 + 4*q^19 + 7*q^27 + 12*q^35 + 20*q^43 + 32*q^51 + 50*q^59 + ...
		

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1+x^k) * (1-x^(12*k))/( (1-x^k) * (1+x^(3*k))),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
    a[ n_] := SeriesCoefficient[ 2^(-1/2) x^(-3/8) EllipticTheta[ 2, Pi/4, x^(3/2)] / EllipticTheta[ 4, 0, x], {x, 0, n}]; (* Michael Somos, Nov 01 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A)^2 * eta(x^6 + A)), n))};

Formula

Expansion of q^(-3/8) * eta(q^2) * eta(q^3) * eta(q^12) / (eta(q)^2 * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 0, ...].
G.f.: Product_{k>0} (1 + x^k) * (1 + x^k + x^(2*k)) * (1 + x^(6*k)).
a(n) ~ 5^(1/4) * exp(sqrt(5*n/6)*Pi) / (2^(11/4) * 3^(3/4) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015