A132267 Decimal expansion of Product_{k>0} (1-1/11^k).
9, 0, 0, 8, 3, 2, 7, 0, 6, 8, 0, 9, 7, 1, 5, 2, 7, 9, 9, 4, 9, 8, 6, 2, 6, 9, 4, 7, 6, 0, 6, 4, 7, 7, 4, 4, 7, 6, 2, 4, 9, 1, 1, 9, 2, 2, 1, 6, 6, 3, 9, 5, 2, 4, 0, 2, 1, 4, 6, 1, 7, 2, 4, 8, 8, 0, 6, 5, 7, 0, 8, 7, 0, 6, 7, 0, 9, 7, 5, 8, 5, 6, 7, 0, 0, 1, 6, 3, 9, 2, 9, 9, 1, 9, 9, 2, 8, 3, 5, 6, 4, 6, 5, 2, 0
Offset: 0
Examples
0.900832706809715279949862694760...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2000
- Richard J. McIntosh, Some Asymptotic Formulae for q-Hypergeometric Series, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; alternative link.
Crossrefs
Programs
-
Mathematica
digits = 105; NProduct[1-1/11^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *) N[QPochhammer[1/11, 1/11], 200] (* G. C. Greubel, Dec 20 2015 *)
-
PARI
prodinf(x=1, 1-1/11^x) \\ Altug Alkan, Dec 20 2015
Formula
Equals exp(-Sum_{n>0} sigma_1(n)/(n*11^n)) = exp(-Sum_{n>0} A000203(n)/(n*11^n)).
Equals (1/11; 1/11){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 20 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(11)) * exp(log(11)/24 - Pi^2/(6*log(11))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(11))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027879(n). (End)