A132296 Sum of the noncube numbers less than or equal to n.
0, 2, 5, 9, 14, 20, 27, 27, 36, 46, 57, 69, 82, 96, 111, 127, 144, 162, 181, 201, 222, 244, 267, 291, 316, 342, 342, 370, 399, 429, 460, 492, 525, 559, 594, 630, 667, 705, 744, 784, 825, 867, 910, 954, 999, 1045, 1092, 1140, 1189, 1239, 1290, 1342, 1395, 1449
Offset: 1
Keywords
Examples
Let n=10. The sum of the noncube numbers <= 10 is 2+3+4+5+6+7+9+10 = 46, the 10th entry in the sequence.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Accumulate[Table[If[IntegerQ[n^(1/3)],0,n],{n,60}]] (* Harvey P. Dale, Oct 16 2012 *)
-
PARI
g(n)=for(x=1,n,r=floor(x^(1/3));sumcu=(r*(r+1)/2)^2;sn=x*(x+1)/2;print1(sn-sumcu","))
-
Python
from sympy import integer_nthroot def A132296(n): return n*(n+1)-(((r:=integer_nthroot(n,3)[0])*(r+1))**2>>1)>>1 # Chai Wah Wu, Sep 03 2024