cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132337 Sum of the integers from 1 to n, excluding the perfect sixth powers.

Original entry on oeis.org

0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, 1224, 1274, 1325, 1377, 1430, 1484
Offset: 1

Views

Author

Cino Hilliard, Nov 07 2007

Keywords

Crossrefs

Different from A000096.

Programs

  • Maple
    A132337 := proc(n) r := floor(n^(1/6)) ; A000217(n)-A000540(r); end proc: seq(A132337(n),n=1..40) ; # R. J. Mathar
  • Mathematica
    Accumulate[Table[If[IntegerQ[Surd[n,6]],0,n],{n,60}]] (* Harvey P. Dale, Jun 01 2022 *)
  • PARI
    g6(n)=for(x=1,n,r=floor(x^(1/6));sum6=r^7/7+r^6/2+r^5/2-r^3/6+r/ 42;sn=x* (x+1)/2;print1(sn-sum6","))
    
  • PARI
    A132337(n)=n*(n+1)/2-(1+n=floor(sqrtn(n+.5,6)))*(2*n+1)*((n^3+2*n^2-1)*n*3+1)*n/42 \\ M. F. Hasler, Oct 09 2010

Formula

Let r = floor(n^(1/6)). Then a(n) = n(n+1)/2 - (r^7/7 + r^6/2 + r^5/2 - r^3/6 + r/42) = A000217(n) - A000540(r).
a(n) = A000217(n) - A000540(A178489(n)). - M. F. Hasler, Oct 09 2010

Extensions

Incorrect formula deleted by Jon E. Schoenfield, Jun 12 2010
Incorrect program replaced by R. J. Mathar, Oct 08 2010
Edited by the Assoc. Editors of the OEIS, Oct 12 2010. Thanks to Daniel Mondot for pointing out that the sequence needed editing.
Incorrect linear recurrence removed by Georg Fischer, Apr 11 2019