A132372 T(n, k) counts Schroeder n-paths whose ascent starting at the initial vertex has length k. Triangle T(n,k), read by rows.
1, 1, 1, 2, 3, 1, 6, 10, 5, 1, 22, 38, 22, 7, 1, 90, 158, 98, 38, 9, 1, 394, 698, 450, 194, 58, 11, 1, 1806, 3218, 2126, 978, 334, 82, 13, 1, 8558, 15310, 10286, 4942, 1838, 526, 110, 15, 1, 41586, 74614, 50746, 25150, 9922, 3142, 778, 142, 17, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 2, 3, 1; 6, 10, 5, 1; 22, 38, 22, 7, 1; 90, 158, 98, 38, 9, 1; 394, 698, 450, 194, 58, 11, 1; 1806, 3218, 2126, 978, 334, 82, 13, 1; 8558, 15310, 10286, 4942, 1838, 526, 110, 15, 1; 41586, 74614, 50746, 25150, 9922, 3142, 778, 142, 17, 1 ; ... ... The production matrix M begins: 1, 1 1, 2, 1 1, 2, 2, 1 1, 2, 2, 2, 1 1, 2, 2, 2, 2, 1 ...
Links
- Lili Mu and Sai-nan Zheng, On the Total Positivity of Delannoy-Like Triangles, Journal of Integer Sequences, Vol. 20 (2017), Article 17.1.6.
- E. Pergola and R. A. Sulanke, Schroeder Triangles, Paths and Parallelogram Polyominoes, Journal of Integer Sequences, Vol. 1 (1998), #98.1.7.
Programs
-
Maple
# The function RiordanSquare is defined in A321620. RiordanSquare((3-x-sqrt(1-6*x+x^2))/2, 10); # Peter Luschny, Feb 01 2020 # Alternative: A132372 := proc(dim) # dim is the number of rows requested. local T, j, A, k, C, m; m := 1; T := [seq([seq(0, j = 0..k)], k = 0..dim-1)]; A := [seq(ifelse(k = 0, 1 + x, 2 - irem(k, 2)), k = 0..dim-2)]; C := [seq(1, k = 1..dim+1)]; C[1] := 0; for k from 0 to dim - 1 do for j from k + 1 by -1 to 2 do C[j] := C[j-1] + C[j+1] * A[j-1] od; T[m] := [seq(coeff(C[2], x, j), j = 0..k)]; m := m + 1 od; ListTools:-Flatten(T) end: A132372(10); # Peter Luschny, Nov 16 2023
Formula
Sum_{k, 0<=k<=n} T(n,k) = A006318(n) .
T(n,0) = A155069(n). - Philippe Deléham, Nov 03 2009
Comments