cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132373 Expansion of c(6*x^2)/(1-x*c(6*x^2)), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 7, 13, 91, 205, 1435, 3565, 24955, 65821, 460747, 1265677, 8859739, 25066621, 175466347, 507709165, 3553964155, 10466643805, 73266506635, 218878998733, 1532152991131, 4631531585341, 32420721097387, 98980721277613, 692865048943291, 2133274258946845
Offset: 0

Views

Author

Philippe Deléham, Nov 10 2007

Keywords

Comments

Hankel transform is 6^C(n+1, 2).
Series reversion of (1+x)/(1 + 2*x + 7*x^2). [Corrected by R. J. Mathar, Nov 19 2009]

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-24*x^2))/(12*x^2-x*(1-Sqrt(1-24*x^2))) )); // G. C. Greubel, Nov 07 2022
    
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-24*x^2])/(12*x^2 -x*(1-Sqrt[1-24*x^2])), {x, 0, 40}], x] (* G. C. Greubel, Nov 07 2022 *)
  • SageMath
    def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    def A132373(n): return sum(6^(n-k)*A120730(n,k) for k in range(n+1))
    [A132373(n) for n in range(51)] # G. C. Greubel, Nov 07 2022

Formula

a(n) = Sum_{k=0..n} A120730(n,k) * 6^(n-k).
From G. C. Greubel, Nov 07 2022: (Start)
G.f.: (1 - sqrt(1-24*x^2))/(12*x^2 - x*(1 - sqrt(1-24*x^2))).
a(n) = ( 7*(n+1)*a(n-1) + 24*(n-2)*a(n-2) - 168*(n-2)*a(n-3) )/(n+1). (End)

Extensions

Terms beyond a(7) added by R. J. Mathar, Nov 19 2009