A132373 Expansion of c(6*x^2)/(1-x*c(6*x^2)), where c(x) is the g.f. of A000108.
1, 1, 7, 13, 91, 205, 1435, 3565, 24955, 65821, 460747, 1265677, 8859739, 25066621, 175466347, 507709165, 3553964155, 10466643805, 73266506635, 218878998733, 1532152991131, 4631531585341, 32420721097387, 98980721277613, 692865048943291, 2133274258946845
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-24*x^2))/(12*x^2-x*(1-Sqrt(1-24*x^2))) )); // G. C. Greubel, Nov 07 2022 -
Mathematica
CoefficientList[Series[(1-Sqrt[1-24*x^2])/(12*x^2 -x*(1-Sqrt[1-24*x^2])), {x, 0, 40}], x] (* G. C. Greubel, Nov 07 2022 *)
-
SageMath
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1) def A132373(n): return sum(6^(n-k)*A120730(n,k) for k in range(n+1)) [A132373(n) for n in range(51)] # G. C. Greubel, Nov 07 2022
Formula
a(n) = Sum_{k=0..n} A120730(n,k) * 6^(n-k).
From G. C. Greubel, Nov 07 2022: (Start)
G.f.: (1 - sqrt(1-24*x^2))/(12*x^2 - x*(1 - sqrt(1-24*x^2))).
a(n) = ( 7*(n+1)*a(n-1) + 24*(n-2)*a(n-2) - 168*(n-2)*a(n-3) )/(n+1). (End)
Extensions
Terms beyond a(7) added by R. J. Mathar, Nov 19 2009
Comments