cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132375 Expansion of c(8*x^2)/(1 - x*c(8*x^2)), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 9, 17, 153, 353, 3177, 8113, 73017, 198401, 1785609, 5060433, 45543897, 133071009, 1197639081, 3581326065, 32231934585, 98156060225, 883404542025, 2730108129937, 24570973169433, 76862217117665, 691759954058985
Offset: 0

Views

Author

Philippe Deléham, Nov 10 2007

Keywords

Comments

Hankel transform is 8^C(n+1, 2).
Series reversion of x*(1+x)/(1+2*x+9*x^2).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-32*x^2))/(16*x^2 -x*(1-Sqrt(1-32*x^2))) )); // G. C. Greubel, Nov 08 2022
    
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-32*x^2])/(16*x^2-x*(1-Sqrt[1-32*x^2])), {x,0, 40}], x] (* G. C. Greubel, Nov 08 2022 *)
  • SageMath
    def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    def A132375(n): return sum(8^(n-k)*A120730(n,k) for k in range(n+1))
    [A132375(n) for n in range(51)] # G. C. Greubel, Nov 08 2022

Formula

a(n) = Sum_{k=0..n} A120730(n,k) * 8^(n-k).
From G. C. Greubel, Nov 08 2022: (Start)
a(n) = (9*(n+1)*a(n-1) + 32*(n-2)*a(n-2) - 288*(n-2)*a(n-3))/(n+1).
G.f.: (1 - sqrt(1-32*x^2))/(16*x^2 - x*(1 - sqrt(1-32*x^2))). (End)