A132375 Expansion of c(8*x^2)/(1 - x*c(8*x^2)), where c(x) is the g.f. of A000108.
1, 1, 9, 17, 153, 353, 3177, 8113, 73017, 198401, 1785609, 5060433, 45543897, 133071009, 1197639081, 3581326065, 32231934585, 98156060225, 883404542025, 2730108129937, 24570973169433, 76862217117665, 691759954058985
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-32*x^2))/(16*x^2 -x*(1-Sqrt(1-32*x^2))) )); // G. C. Greubel, Nov 08 2022 -
Mathematica
CoefficientList[Series[(1-Sqrt[1-32*x^2])/(16*x^2-x*(1-Sqrt[1-32*x^2])), {x,0, 40}], x] (* G. C. Greubel, Nov 08 2022 *)
-
SageMath
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1) def A132375(n): return sum(8^(n-k)*A120730(n,k) for k in range(n+1)) [A132375(n) for n in range(51)] # G. C. Greubel, Nov 08 2022
Formula
a(n) = Sum_{k=0..n} A120730(n,k) * 8^(n-k).
From G. C. Greubel, Nov 08 2022: (Start)
a(n) = (9*(n+1)*a(n-1) + 32*(n-2)*a(n-2) - 288*(n-2)*a(n-3))/(n+1).
G.f.: (1 - sqrt(1-32*x^2))/(16*x^2 - x*(1 - sqrt(1-32*x^2))). (End)
Comments